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Motivations

Big Data = here Large data (a lot of individuals) in opposition to high
dimensional data (may also be used in this framework...)
Examples :

Marketing data : 1012 clicks per months (on an average of 106

products) : even to calculate means the cost of retrieving all the data is
so high that it is not done in practice.

Graph data : for n individuals (nodes), n2 possible connections
(edges) : too large to compute simple statistics (Facebook, Google,
etc...), optimizing likelihood is infeasible....

Original work motivated by some problem linked to risk
minimization in statistical learning for very large population as
well as tail estimation. Bertail, Chautru, Clémençon (2017), Scand. J.
Stat. , (2015), ESAIM + phD thesis of Emilie Chautru(2015).
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Sampling ideas for big data

Survey sampling ideas have been used for a long time in computer science.
Basic forms : Subsampling (MapReduce) : see also the so-called divide
and conquer strategy in statistical litterature.
In Spark, the main method for estimating too large statistics is Poisson
sampling (see later).
For graphs, several survey sampling plans : sample nodes or edges, balls
around nodes (snow ball sampling) etc...

Figure: Snowball sampling for graphs

Some sampling ideas in the features dimension (subsampling variables for
random forest).
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Existing functional results in survey sampling

Very few functional results even in the real case until recently

Some general results for general classes of functions for sampling
uniformly WR or WoR or for sampling schemes satisfying some
exchangeability conditions : particular cases of weighted bootstrap.

Functional version for stratified survey sampling plan ( UWR or UWoR
in each strata) -> same as independent bootstrap or subsampling in
each strata), Breslow & Wellner, 2008 and Saegusa & Wellner, 2012.

J.C. Wang (2012) for empirical cdf, some problems... Boistard, Lopuhäa
and Ruiz-Gazen (2017), Annals of stat., for general survey sampling
plans for the cdf, based on control of fourth order moments. General
results for empirical process indexed by (uniformly) Donsker classes of
functions, Bertail, Chautru, Clémençon (2017), Scand. J. of stat, but
only for survey sampling close to Poisson or rejective sampling. Recent
generalisation by Bertail and Rebecq (2018) for negatively associated
survey sampling.
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These are asymptotic results. For statistical learning need to control
the risk which can be reduced to controlling the tail of an empirical
process indexed by a class of function (= the algorithm) for any (at
least) moderate sample size.

For statistical learning applications in big data, need to obtain
concentration inequalities or exponential bounds. Hoeffding inequality
for SwOR : an improved result by Bardenet and Maillard (2015),
Bernoulli + empirical bounds (that is replacing the true variance by an
estimated one.

Goal of this work : how to obtain Hoeffding or Bernstein type bounds
for survey sampling. Then generalize them for general classes of
function (easy with standard tools) : essentially a covering number of
the class multiplied by a exponential bound. See Clemençon, Bertail
and Chautru (2017), Statistics.
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Introduction and notations Survey sampling plans

Inclusion probabilities and survey sampling plans

Sampling units

S ( UN of size n << N taken at Random

Inclusion variable : εi := I{i ∈ S} i ∈ UN
Inclusion probability : πi := P (εi = 1) = E (εi ) i ∈ UN
Second order inclusion probability : πi,j := P (εi = 1, εj = 1) = E (εiεj )

(i , j ) ∈ U2
N

More generally the survey sampling plan is characterized by a
distribution RN on S ≡ (ε1, . . . , εN )
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Introduction and notations Survey sampling plans

Horvitz-Thompson estimators

Classical Horvitz-Thompson estimator of the mean of some
characteristic X

Parameter of interest SN =
∑N

i=1 Xi

Horvitz Thompson estimator

ŜεN
π =

∑
k∈U

Xk

πk
εk

CLT’s : Pioneering work of Hajek (1964), Ann Math. Stat, very difficult
proofs based on coupling arguments respectively for rejective sampling,
Pareto sampling Rosen(1997), Ann Stat. , sampling plans close to
Rejective sampling (Rao-Sampford, Successive sampling etc...), see
Berger(1998), JSPI, by controlling the L1 distance between these plans
and rejective sampling.
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Introduction and notations Poisson and rejective sampling

Some examples

USWoR (fixed size n) P (S = s) = I{#s = n}/C n
N

Poisson sampling with same inclusion probabilities π1 = . . . = πN = π

n =
∑N

i=1 εi of random size with expectation n0 = Nπ : and TN is
characterized by

TN (s) = P (S = s) = πcard(s)(1− π)N−card(s)

CLT immediate by independence : use Lindenberg-Feller theorem
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Introduction and notations Poisson and rejective sampling

Poisson survey sampling plan

Definition of Poisson sampling probability
εi i.i.d. B(pi ), i = 1, ..,N E (n) =

∑N
i=1 pi

TN (s) := P (S = s) =
∏
i∈s

pi
∏
i /∈s

(1− pi )

Properties

entirely characterized by first order inclusion probabilities 1er ordre

independence between the εi (easier !) : CLT immediate.

pi eventually function of an auxiliary r.v. W ; PW given for the
whole population UN :

pi = E
(
εi
∣∣Wi

)
≡ p(Wi )
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Introduction and notations Poisson and rejective sampling

Rejective sampling plan or Conditional Poisson

Definition

For a fixed n and given inclusion probabilities πR1 , . . . , πRN the rejective
sampling has a distribution given by

RN := argmax
p:(π1,...,πN )=(πR

1 ,...,π
R
N )

−
∑

{s:#s=n}

p(s) logp(s)

å sampling plan of "maximal entropy", or conditionnal Poisson

Link to the Poisson plan

Draw a sample S according to a Poisson plan with well chosen inclusion
probabilities p1, . . . , pN with

∑N
i=1 pi = n (canonical Poisson sampling)

If #S = n keep S, else draw a new sample.

å link between (p1, . . . , pN ) and (πR1 , . . . , π
R
N ) given in Hájek (1964)

considerably reduce the variance of estimators because of the fixed size.
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Introduction and notations Negative association of survey sampling

Conditional balls and bin sampling are negatively associated

Rejective sampling = Poisson sampling conditional to the size equal a
fixed n

Subsampling = Rejective sampling with equal inclusion probabilities

Pareto sampling, order sampling : but too costy for big data , need to
generate N uniform r.v.’s and to reorder them.

Pivotal sampling or Srinivasan sampling

Balanced sampling (which respects some margin conditions) using the
Cube Method (Deville and Tillé, 2004) : very efficient and "almost"
balanced.

All these method are Conditional balls and bin sampling (Dubhashi &
Ranjan (1998)) and enjoy a great property : Negative asssociation !
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Introduction and notations Negative association of survey sampling

Negative association

Negative and Positive association (see Joag-Dev and Proschan, 1983, Annals
of Stat. ) : frequently used in time series. See the lecture notes of Oliveira,
2012, Springer for details, main properties and applications to various fields.

Definition

The r.v.’s Z1, . . . , Zn are said to be negatively associated (NA) iff for any
pair of disjoint subsets A1 and A2 of the index set [[1,N ]]

Cov (f ((Zi )i∈A1), g((Zj )j∈A2)) ≤ 0, (1)

for any real valued measurable functions f : E#A1 → R and g : E#A2 → R
that are both increasing in each variable.
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Introduction and notations Negative association of survey sampling

Negative association for survey sampling plans

Importance of negative association stressed recently by Borcea and
Brändén(2009), Inventiones Mathematicae, Brändén and Jonasson
(2012), Scandinavian Journal of Statistics, based on works by
Pemantle(2004) Math. Phys. 41, Joag-Dev and Proscan (1983), Annals
of Stat.

Borcea and Brändén(2009) propose very clever criteria to prove NA
(strongley Raleigh property)

Many properties of resampling procedure (including weighted
bootstrap) may be derived by proving Negative Association including
CLT, deviation inequalities : see Patterson, Smith, Taylor,
Bozorgnia(2001), Nonlinear Analysis. Oliveira (2012), Asymptotics for
assoc. r.v.’s, Springer. See also recent applications in bayesian statitics
in Gerger, Chopin, Whitely(2019), Arxiv
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Introduction and notations Negative association of survey sampling

Negative association for survey sampling plans

The usual CLT’s (or functional CLT, Louichi,1999, Ann. IHP) proved
for negative associated r.v’s not sufficient to get CLT for estimators in
survey sampling (the covariance are too big...) but works for
generalized bootstrap resampling plans.

Using results by Utev and Peligrad (2006), Ann. Proba, it is possible to
get general CLT for survey sampling : Bertail and Rebecq(2018).

Negative association leads to exponential bounds immediately : but not
efficient bounds...
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Bernstein bounds for Poisson sampling plans Tail bounds in the independent case

Tail bounds for sums in the independent case

Hoeffding (1963).

Theorem (Hoeffding’s inequality)

Let Z1,Z2, · · · ,Zn be independent random variables such that
ai ≤ Zi ≤ bi (i = 1, · · · ,n), then for t > 0

P

(
n∑

i=1

Zi − EZi ≥ t

)
≤ exp

(
−

2t2∑n
i=1(bi − ai )2

)
.
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Bernstein bounds for Poisson sampling plans Tail bounds in the independent case

Tail bounds for sums in the independent case

Theorem (Bernstein’s inequality)

Let Z1, · · · ,n be independent random variables with variance σ2
i <∞,

such that, for all integers p ≥ 2,

E|Zi |
p ≤ p!M p−2σ2

i /2 for all i ∈ {1, · · · ,n}.

Then, for all t > 0,

P

(
n∑

i=1

(Zi − EZi ) ≥ t

)
≤ exp

(
−

t2

2(σ2 +Mt/3)

)
,

where σ2 =
∑n

i=1 σ
2
i .

Remark : if the Zi ’s are bounded by M, the same results holds.
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Bernstein bounds for Poisson sampling plans Tail bounds for Poisson sampling

Tail bounds for Poisson sampling

Theorem

(Poisson sampling) Assume that the survey scheme εN defines a
Poisson sampling plan with first order inclusion probabilities pi > 0,
with 1 ≤ i ≤ N. Then, we have almost-surely : ∀t > 0, ∀N ≥ 1,

P
{
ŜεN
pN

− SN > t
}
≤ exp

−

∑N
i=1

1−pi
pi

x 2
i(

max1≤i≤N
xi
pi

)2H

(
max1≤i≤N

|xi |
pi
t∑N

i=1
1−pi
pi

x 2
i

)
(2)

≤ exp

(
−t2

2
∑N

i=1
1−pi
pi

x 2
i + 2

3 max1≤i≤N
|xi |
pi
t

)
, (3)

where H (t) = (1+ t) log(1+ t) − t for t ≥ 0.

Proof : These bounds result from Bennett inequality and Bernstein
exponential inequality respectively, when applied to (εi/pi )xi , 1 ≤ i ≤ N .
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Bernstein bounds for Poisson sampling plans Tail bounds for negatively associated sampling plans

Then we have (see Janson (1994), unpublished manuscript, Shao(2000), J.
Theor. Probability

Theorem

Let N ≥ 1 and ε∗N = (ε∗1, . . . , ε
∗
N ) be the vector of indicator variables

related to a NA scheme on IN with first order inclusion probabilities
(π1, . . . , πN ) ∈]0, 1]N . Then, for any t ≥ 0 and N ≥ 1, we have :

P
{
Ŝε∗

N
π − SN ≥ t

}
≤ 2 exp

−

∑N
i=1

1−πi
πi

x 2
i(

max1≤i≤N
xi
πi

)2H

(
max1≤i≤N

|xi |
πi
t/2∑N

i=1
1−πi
πi

x 2
i

)
≤ 2 exp

(
−t2

2
3 max1≤i≤N

|xi |
πi
t + 2

∑N
i=1

1−πi
πi

x 2
i

)
.
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From Poisson to rejective (and more general plans)

From Poisson to Rejective sampling

A simple interpretation of Hajek(1964)’s work and a much-much-much more
simpler proof of the CLT for conditional Poisson sampling scheme including
rejective sampling, successive sampling (not negatively associated),
Rao-Sampford sampling, stratified sampling and so on...
Consider the regression

N−1
N∑
i=1

εi
Xi

pi
−XN = RN−1(

N∑
i=1

εi − n) + ηN

with ηN orthogonal to
∑N

i=1 εi .

then easy calculations shows that

R = cov(N−1
N∑
i=1

εi
Xi

pi
,

N∑
i=1

εi − n)/V (N−1
N∑
i=1

εi )

=

∑N
i=1 Xi (1− pi )∑N
i=1 pi (1− pi )

= θN
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From Poisson to rejective (and more general plans)

For rejective sampling (Poisson sampling conditionally to a fixed size)
consider the distribution of the Horvitz Thompson mean under rejective
sampling. If we denote by εi ’s the plan corresponding to the corresponding
Poisson sampling, this is given by

P

(
√
N

(
N−1

N∑
i=1

εi
Xi

pi
−XN

)
≤ x

∣∣∣∣∣N−1/2
N∑
i=1

εi = N−1/2n

)

= P

(
√
NηN ≤ x

∣∣∣∣∣N−1/2
N∑
i=1

εi = N−1/2n

)

=
P
(√

NηN ≤ x , N−1/2∑N
i=1 εi = N−1/2n

)
P(N−1/2

∑N
i=1 εi = N−1/2n)
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From Poisson to rejective (and more general plans)

Variance reduction

Define dN =
∑N

i=1 pi (1− pi ) the variance Var(
∑N

i=1 εi ) of the size of the
Poisson plan We have the following decomposition

Var

(
N∑
i=1

εi

pi
xi

)
= σ2

N + θ2
NdN , (4)

where

σ2
N = Var

(
N∑
i=1

(εi − pi )
(
xi
pi

− θN

))
(5)

is the asymptotic variance of the statistic Ŝε∗
N

pN
, see [Haj64].
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From Poisson to rejective (and more general plans) Sharp tail for rejective sampling

Sharp tail for rejective sampling

Theorem

Let N ≥ 1. Suppose that ε∗N is a rejective scheme of size n ≤ N with
canonical parameter pN = (p1, . . . , pN ) ∈]0, 1[N . Set
XN = 2max1≤j≤N |xj |/pj . Then, there exist universal constants C and
D such that we have for all t > 0 and for all N ≥ 1,

P
{
Ŝε∗

N
pN

− SN > t
}
≤ C exp

(
−
σ2
N

X 2
N
H
(
tXN

σ2
N

))
≤ C exp

(
−

t2

2
(
σ2
N + 1

3 tXN
)) ,

as soon as min{dN , d∗N } ≥ 1 and dN ≥ D.
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From Poisson to rejective (and more general plans) Sharp tail for rejective sampling

Ideas of the proofs

Idea similar to MC tail bounds obtained by Bertail and
Clémençon(2010) Probability Theory and its applications, for Markov
chains.

For the denominator : two solutions. Either use an Edgeworth
expansion or sharp Berry-Esséen Bound (see for instance Deheuvels,
Puri, Ralescu (1989), J. Multivariate Analysis) : unfortunately a precise
analysis shows that the constant C is very big. Under some additional
assumptions assuming that all the weights are of the same order n/N ,
then if pi ≥ cn/N for all i ∈ {1, . . . , N }. Then, we have : ∀N ≥ 1,
∀n < N , P{MN = 0} ≥ e−1/6√c√

2πdN
.

For the numerator, exponential change (Esscher transform Pu ,N ) and
then get a Chernoff-bound combined again with an upper Berry Esseen
Bound for Pu,N {MN = 0}, an idea originally introduced by
Talagrand(1995), the missing factor in Hoeffding inequality, Ann. IHP.
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From Poisson to rejective (and more general plans) Sharp tail for rejective sampling

Sharp tail for rejective sampling with inclusion prob.

Theorem

Suppose that the assumptions of preceeding Theorem are fulfilled and
set MN = (6/dN )

∑N
i=1 |xi |/πi and XN = 2max1≤j≤N |xj |/pj . The

following assertions hold true.

(i) For all N ≥ 1, we have almost-surely :∣∣∣Ŝε∗
N

πN − Ŝε∗
N

pN

∣∣∣ ≤MN .

(ii) There exist universal constants C and D such that, for all
t >MN and for all N ≥ 1, we have :

P
{
Ŝε∗

N
πN − SN > t

}
≤ C exp

(
−
σ2
N

X 2
N
H
(
(t −MN )XN

σ2
N

))
≤ C exp

(
−

(t −MN )
2

2
(
σ2
N + 1

3 (t −MN )XN
)) ,
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From Poisson to rejective (and more general plans) Sharp tail for rejective sampling

Idea of the proof

Analysis of the approximations in Hajek (1964), Ann. Math. Stat. shows
that

Lemma

Let π1, . . . , πN be the first order inclusion probabilities of a rejective
sampling of size n with canonical representation characterized by the
Poisson weights p1, . . . , pN . Provided that dN =

∑N
i=1 pi (1− pi ) ≥ 1,

we have : ∀i ∈ {1, . . . , N },∣∣∣∣ 1πi − 1
pi

∣∣∣∣ ≤ 6
dN
× 1− πi

πi
.
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From Poisson to rejective (and more general plans) Controlling the distance to Rejective plan

Controlling the distance between sampling plans

Same ideas as Berger(1998), JSPI

Total Variation : ‖T̃N −RN ‖1 :=
∑

s⊂PN

∣∣RN (s) −TN (s)
∣∣

Entropy : DKL(TN ||R̃N ) :=
∑

s⊂PN
TN (s) log

TN (s)
RN (s)

Lemma

Let εN and ε̃N be two schemes defined on the same probability space
and drawn from plans RN and R̃N respectively and let pN ∈]0, 1]N .
Then, we have : ∀N ≥ 1, ∀t ∈ R,∣∣∣P{ŜεN

pN
− SN > t

}
− P
{
Ŝ ε̃N
pN

− SN > t
}∣∣∣ ≤ ‖R̃N −RN ‖1

≤
√
2DKL(RN ||R̃N ).
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Confidence bands for the distribution function
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Confidence bands for the distribution function Confidence bands for the distribution function

Confidence bands for the distribution function

A particular case of interest
1 F = {fy(x ) := I{x ≤ y}, (x , y) ∈ X 2} è

Gπ(RN )
RN

fy =
√
N (Fπ(RN )

RN
(y) − FN (y))

2 Fonctional CLT è
√
N sup

y∈R

∣∣∣Fπ(RN )
RN

(y) − FN (y)
∣∣∣ D−→
N→∞ sup

y∈R
|Gfy |

3 Confidence bands of level 1− α for FN
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Confidence bands for the distribution function Some simulation results

Illustration

The underlying model

X = W +U •W ; T N (µ, σ2
W ,w?,w?) •U ; N (0, σ2

U ) •W ⊥ U

Inclusion probabilities proportional to W

Need to have an upper bound for the maximum of the Xi ’s

Results : an example
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Figure: Example of the 95% confidence bands of the empirical distribution
function in the population FN (black line) with c = 0.1 (dark pink area) or with
c = 0.5 (light pink area) for N = 500 (left hand plot) and N = 10000 (right hand
plot)
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Conclusions

A lot of extensions : concentration for HT-empirical process :
application to empirical risk minimization based on survey
sampling techniques. Taylored to rejective or conditional Poisson
techniques. What about Pareto, cluster or snow ball sampling ?

Optimal choice of weights depending on the density of (X ,W )

where W is an auxiliary variable observed on the whole database.
How to choose the weights : depends on the variable of interest
but essentially amounts to minimize the variance in the bound.

Application to HT- gradient descent for very large datasets, with
adequate choice of the weights : improve over mini-batch
techniques.

Patrice Bertail (MODAL’X) Exponential bounds in survey sampling August 2018 34 / 35



Conclusions

A few bibliographical references

Patrice Bertail, Emilie Chautru, and Stéphan Clémençon, Empirical processes in survey sampling with (conditional)

poisson designs, Scandinavian Journal of Statistics 44 (2017), 97–111.

Y.G. Berger, Rate of convergence to normal distribution for the Horvitz-Thompson estimator, J. Stat. Plan. Inf 67 (1998),
no. 2, 209–226.

H. Boistard, P. Lopuhaa, and A. Ruiz-Gazen, Functional central limit theorems for single-stage sampling designs, The

Annals of Statistics 45 (2017), 1728–1758.

R. Bardenet and O.A. Maillard, Concentration inequalities for sampling without replacement, Bernoulli 21 (2015),
no. 3, 1361–1385.

N.E. Breslow and J.A. Wellner, A Z-theorem with estimated nuisance parameters and correction note for “Weighted likelihood

for semiparametric models and two-phase stratified samples, with application to Cox regression”, Scandinavian Journal of
Statistics 35 (2008), 186–192.

J. Hajek, On the Convergence of the Horvitz-Thompson Estimator, The Annals of Mathematical Statistics 35 (1964),
no. 4, 1491–1523.

S. Janson, Large deviation inequalities for sums of indicator variables, Unpublished manuscript, available at

www2.math.uu.se/ svante/papers/sj107.ps (1994).

Q.M. Shao, A Comparison Theorem on Moment Inequalities Between Negatively Associated and Independent Random Variables,

Journal of Theoretical Probability 13 (2000), no. 2, 343–356.

T. Saegusa and J.A. Wellner, Weighted likelihood estimation under two-phase sampling, Preprint available at

http ://arxiv.org/abs/1112.4951v1 (2011).

Patrice Bertail (MODAL’X) Exponential bounds in survey sampling August 2018 35 / 35


	Introduction and notations
	Survey sampling plans
	Poisson and rejective sampling
	Negative association of survey sampling

	Bernstein bounds for Poisson sampling plans
	Tail bounds in the independent case
	Tail bounds for Poisson sampling
	Tail bounds for negatively associated sampling plans

	From Poisson to rejective (and more general plans)
	Sharp tail for rejective sampling
	Controlling the distance to Rejective plan

	Confidence bands for the distribution function
	Confidence bands for the distribution function
	Some simulation results


