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Summary

There exists a large number of sampling algorithms, among which
systematic sampling is probably the most famous (Madow, 1949;
Tillé, 2006). It has found applications in a variety of fields.

Systematic sampling enjoys good practical properties, but suffers
from a lack of randomness. Some common statistical properties are
unlikely to hold, unless explicitly making strong model assumptions
(which we try to avoid).

Pivotal sampling appears as a good alternative. While possessing
also good practical properties, it introduces more randomness in the

sample selection = better statistical properties.
P prop

We consider an application for spatial sampling.
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Some (short) reminders on sampling

Properties of pivotal sampling

Spatial sampling

One step beyond
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Some (short) reminders on
sampling



Notations
We are interested in a finite population of statistical units

U={1,....,k,...,N}
Denote by y a variable of interest taking the value y; for some unit

k, and t, the total.

We note mp, = Pr(k € S) > 0 the selection probability of some unit
k. The sum }, ;; mx = n gives the average sample size.

By using a sampling design matching these inclusion probabilities,
the total ¢, is unbiasedly estimated by the Horvitz-Thompson (HT)
estimator

. Yk Iy,

fr = S E Ny, 1

o = TR, o
kes keU

with [ the sample membership indicator.
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Algorithms of sampling

Large number of sampling algorithms matching a prescribed set of
inclusion probabilities (see Tillé, 2006). We consider two of them :
systematic sampling and pivotal sampling.

Systematic sampling (Madow, 1949) consists in randomly selecting
a first unit, and then performing deterministic jumps to select the
remaining units.

Pivotal sampling (Deville and Tillg¢, 1998 ; Srinivasan, 2001) is based
on a principle of duels between units : the units fight, until one of
them cumulates a sufficient probability so that a new selection is
possible.
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Systematic sampling on an example
Population U of size N = 11, with n = 3 and

= = (04 02 0.1 05 04 0.2 04 0.2 0.1 0.2 0.3)T .
0 1 2 3
| Ly L A I T | |
| [ T l 1 1 1 l 1 T 1 I
Vo Vi VaVs Va Vs Ve Ve VgV Vig Vi1

We represent the cumulated inclusion probabilities on a segment of
length n. Each sub-segment represents one unit.
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Systematic sampling on an example
Population U of size N = 11, with n = 3 and

m~ = (04 02 0.1 05 04 0.2 04 0.2 0.1 0.2 0.3)T .
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We represent the cumulated inclusion probabilities on a segment of
length n. Each sub-segment represents one unit.
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Systematic sampling on an example
Population U of size N = 11, with n = 3 and

= = (04 02 0.1 05 04 0.2 04 0.2 0.1 0.2 0.3)T .
0 1 2 3
| L l L | ; I R T B l |
I 1 T l 1 1 1 l 1 T 1 I
Vo Vi VaVs Va Vs Ve Ve VgV Vig Vi1

We represent the cumulated inclusion probabilities on a segment of
length n. Each sub-segment represents one unit.

The sample is obtained through a random start u ~ U[0, 1], followed
by jumps of length 1.
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Systematic sampling on an example
Population U of size N = 11, with n = 3 and

= = (04 02 0.1 05 04 0.2 04 0.2 0.1 0.2 0.3)T .
0 1 2 3
| L l L | ; I R T B l |
I 1 T l 1 1 1 l 1 T 1 I
Vo Vi VaVs Va Vs Ve Ve VgV Vig Vi1

We represent the cumulated inclusion probabilities on a segment of
length n. Each sub-segment represents one unit.

The sample is obtained through a random start u ~ U[0, 1], followed
by jumps of length 1.

u=0.82¢€ [V3,Vi] = unit 4 selected,
1+u=182¢ [V, V7] = unit 7 selected,
2+u=282¢ [Vig,Vii] = unit 11 selected.

10/40



Systematic sampling on an example (2)
Population U of size N = 11, with n = 3 and

m = (04 02 0.1 05 04 0.2 04 0.2 0.1 0.2 0.3)T.

1 2 3
| [ l | | | i . [ I l |
1 1 I B I |

Vi VaVs Va Vs Ve Vz VgVo Vig Vi1

ST

Very simple method, sequential, matching exactly the m;’s. Exten-

sively used in surveys and in spatial sampling (Thompson, 2002;
Ripley, 2004).

One unit selected per microstratum = stratification effect.

Avoids the selection of neighbouring units = well-spread sample.
Drawbacks :

» unefficient if the variable of interest exhibits some periodicity,
» very few randomness = limited statistical properties.
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Pivotal sampling on an example

Population U of size N = 11, with n = 3 and

© = (04 02 0.1 05 04 02 04 0.2 0.1 0.2 0.3)T.

(0.6,0) with proba 0.4/0.6,
(0,0.6) with proba 0.2/0.6
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Pivotal sampling on an example

Population U of size N = 11, with n = 3 and

© = (04 02 0.1 05 04 02 04 0.2 0.1 0.2 0.3)T.

™ T2

B _ { (0.6,0) with proba 0.4/0.6,
) = (04,02 = { (0,0.6) with proba 0.2/0.6
If unit 2 survives, we get

3 = (0 06 01 05 04 02 04 0.2 0.1 0.2 0.3)".
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Pivotal sampling on an example (2)

Population U of size N = 11, with n = 3.

3 = (0 0.6 0.1 05 04 0.2 04 0.2 0.1 0.2 0.3)".
2 3
T 1
| L - I R I T | |
| L l I I I l I LI I I
0 1 2 3
T + Ty T3

1 1)y _ [ (0.7,0) with proba 0.6/0.7,
R )_(0'6’0'1)_{ (0,0.7)  with proba 0.1/0.7
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Pivotal sampling on an example (2)

Population U of size N = 11, with n = 3.

3 = (0 0.6 0.1 05 04 0.2 04 0.2 0.1 0.2 0.3)".
2 3
T 1
| L - I R I T | |
| L l I I I l I LI I I
0 1 2 3
T + Ty T3

1 1)y _ [ (0.7,0) with proba 0.6/0.7,
sy ) = (08,00 = { (0,0.7)  with proba 0.1/0.7
If unit 3 survives, we get

@ = (00 0.7 05 0.4 0.2 04 0.2 0.1 0.2 0.3)".
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Pivotal sampling on an example (3)

Population U of size N = 11, with n = 3 and

73 = (00 0.7 05 0.4 0.2 0.4 0.2 0.1 0.2 0.3)".
3 4
T 1

{
[
|

0
T + T + 3 T4

@2 (2 _ _J (1,0.2) with proba 0.5/(2 — 1.2),
(3", ma") = (0.7,05) = { (0.2,1)  with proba 0.3/(2 — 1.2)
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Pivotal sampling on an example (3)

Population U of size N = 11, with n = 3 and

73 = (00 0.7 05 0.4 0.2 0.4 0.2 0.1 0.2 0.3)".
3 4
T 1

{
[
|
0
T + T + 3 T4

(Wéz)’ﬁiz)) _(0.7,0.5) = { (1,0.2)  with proba 0.5/(2 — 1.2),

(0.2,1)  with proba 0.3/(2 — 1.2)
If unit 3 wins, we get

3 = (0010204 0204020102037,...
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Pivotal sampling on an example (4)

Population U of size N = 11, with n = 3 and

0 = &9 0 0.7 0.5 04 0.2 04 0.2 0.1 0.2 0.3)7.
1 J1

1

[

|

|
0 1 2 3

(W§2),W£2)) —(0.7,0.5) = { (1,0.2) with proba 0.5/(2 — 1.2),

(0.2,1) with proba 0.3/(2 —1.2)
If unit 3 wins, we get

3 = (00102040204 0201 0203)7,...

Unit 3 is the first winner (/7). Unit 4 is the first jumper (J;).
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Pivotal sampling on an example (5)

Population U of size N = 11, with n = 3 and

m~ = (04 02 0.1 05 04 0.2 04 0.2 0.1 0.2 0.3)T.

k=3 k=4 k=9

Simple method, sequential, matching exactly the m;’s.
One unit selected per microstratum =- stratification effect.

Avoids the selection of neighbouring units = well-spread sample.

More randomness = good statistical properties.
Particular case of the cube method (Deville and Tille, 2004).
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Properties of pivotal sampling



Asymptotic set-up and assumptions for CLT

Asymptotic set-up of Fuller (2011) : U belongs to a nested sequence
of populations of size N — oco.

H1 : Non-degenerate : 3fy, f1 s.t.
0< fo<m, < fi<lforanykeU.
H2 : Finite moment of order 4 : 3C s.t.

1 t\* ) n
[@Nz<yk—]\y[) <Cy lfaHTr;“S_N']

keU

H3 : Non-vanishing variance within microstrata : 3C5 > 0 s.t.
2

Z Z Qik ii - Z an > 027-

i=1 keU, ke,
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Comparison with multinomial sampling

Pivotal sampling design is always more efficient than with-replacement
sampling of same size, a.k.a. multinomial sampling (Chauvet, 2017).

This leads to the variance inequality

2

o yk ty

V tﬂ_ < E Zr 2
p<y) - Trk<7rk n>

keU

Under the assumption H2 (finite 4th moment), the HT-estimator is
mean-square consistent for the true total :

Ey [{N7 (fr —1,)}'] = O(7).
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Martingale decomposition
Microstratum ¢ — 1

Ji=
1
| | | | | |
I I I I l 1
7—1 i
Microstratum ¢
W; Ji
[ 1 1
| | |
[ [
b;

n

R Yyw; YJ;

bym =ty = Z{WW +b E{]'—ifl} {
=1 Ji

™wW; TJ;

martingale difference sequence

for —t -
L I
=1
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Central-limit theorem

Under Assumptions (H1)-(H3), the estimator ,, is asymptotically
normally distributed (Chauvet and Le Gleut, 2018) :

tyr — t
LY . N(0,1).

Vi (tyr)

The proof is obtained by checking the sufficient conditions for a
martingale central-limit theorem given in Ohlsson (1986) :

n

=1
n
ZE{EA}(WZ) —pr L
=1

Problem : design-unbiased variance estimation is not possible.
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Conservative variance estimator _ _ _
To simplify, suppose n even. The difference variance estimator is

n/2

2
vprrr(fyr) = D _(1+8) <yW2_yW—> _

=il Wi  TWai—
Omitting the d;'s, this is the unbiased variance estimator in case of
stratification with n/2 strata, and multinomial sampling inside.
This estimator is always conservative (Chauvet and Le Gleut, 2018) :
Ep{vprrr(tyr)} > Vplfyr)-
Noting 7j; = max m, we have

5 < 7T]ZV[(l +7TM)
2(2 — )

With moderately large inclusion probabilities, we can safely consider :

< 0.05 if mpy < 0.35.

n/2

2
a Wz yW i—
vprrFe(fyn) = § : <y2 _ 21)

=1 \TTWa; TWai—1



Spatial sampling

Joint with Ronan Le Gleut (Insee)
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Working model

In a context of spatial sampling, first law of geography of Tobler :
"Everything is related to everything else, but near things are more
related than distant things".

Working model of type (see Grafstrom and Tille, 2013) :

Yk = P+ e,
Em(ek) = 0 et CO?}m(Ek’ El) = o'ko'lpd(kvl)

= better to avoid selecting neighbouring units, which carry a similar
information.
= better to spread well the sample over space.

More auxiliary information may be available, resulting in more effi-
cient sampling strategies (Grafstrém and Tillé, 2013).
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Systematic sampling on a regular grid

» A regular grid is randomly
placed on the area under
study.

sample
frame

» A sample of points is se-
lected on the grid via sys-
tematic sampling.

'y
/I DS S84 243 » The sample is spread over
crariraiess space, but we may face
iiiiie. some unexpected periodi-

H el
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Generalized Random Tesselation Sampling (GRTS)
Stevens and Olsen (2004)
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Generalized Random Tesselation Sampling (GRTS)

Stevens and Olsen (2004)

» Tesselation of the area on a regular grid,

with "addresses".
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Generalized Random Tesselation Sampling (GRTS)
Stevens and Olsen (2004)

d » Tesselation of the area on a regular grid,

with "addresses".
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Generalized Random Tesselation Sampling (GRTS)
Stevens and Olsen (2004)

| | » Tesselation of the area on a regular grid,
with "addresses".

» The addresses are ranked on a line.
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Generalized Random Tesselation Sampling (GRTS)
Stevens and Olsen (2004)

» The addresses are ranked on a line.

/\\ » Tesselation of the area on a regular grid,
TN L with "addresses".
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Generalized Random Tesselation Sampling (GRTS)
Stevens and Olsen (2004)

» Tesselation of the area on a regular grid,

T% L\ with "addresses".
\ » The addresses are ranked on a line.

» Sample selection on the line via syste-
matic sampling after (partial) randomi-

\., zation.
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Generalized Random Tesselation Sampling (GRTS)
Stevens and Olsen (2004)

» Tesselation of the area on a regular grid,

T% L\ with "addresses".
\ » The addresses are ranked on a line.

» Sample selection on the line via syste-
matic sampling after (partial) randomi-

\0 zation.
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Pivotal Tesselation Method

The GRTS method gives samples well spread over space (Stevens
and Olsen, 2004), but with systematic sampling the study of the
statistical properties of the HT-estimator is made difficult (and not
sure to hold), even with a partial randomization.

We propose to use the tesselation method, but by replacing systema-
tic sampling by pivotal sampling. This leads to the Pivotal Tesselation
Method (PTM).

The sample is still well spread over space + HT-estimator consistent
and asymptotically normal.

Alternatively, pivotal sampling can be used with any spatial sampling

design with some form of ranking on units (e.g., Dickson and Tillé,
2016).
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A small simulation study

Example 5 of Grafstrém et al. (2012). Divide the unit square accor-
ding to a 20 x 20 grid = population of N = 400 units.

Variable y; = area within the cell under f(z1,22) = 3(x1 4 22) +
sin{6(x1 + z2)}.

Samples of size n = 16,32 or 48 with equal probabilities. Spatial
sampling designs :
» pivotal tesselation method (PTM),
» generalized random tesselation sampling (GRTS),
» local pivotal methods (LPM1 and LPM2; Grafstrom et al.,
2012).
» pivotal method through Traveling Salesman Problem order (TSP,
Dickson and Till¢, 2016).
» simple random sampling (SRS).
Computation of an indicator of spatial balance (Voronoi polygons)
+ variance associated to each sampling strategy.



Results

Table — Monte Carlo Mean of the spatial balance and Monte Carlo

Variance of the Horvitz-Thompson estimator for Population 1

PTM GRTS LPM1 LPM2 TSP SRS
Enc(D)
n=16 0.07 0.12 0.08 0.09 0.11 0.33
n=32 008 0.11 0.07 0.07 0.10 0.30
n=48 0.09 0.11 0.07 0.07 0.10 0.29
Virc (fyr) (x100)
n=16 153 249 194 196 265 12.48
n=32 039 089 054 057 065 6.18
n=48 0.16 034 026 0.27 0.28 3.91
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One step beyond



Sampling in datastreams

Supposing that |yx| < M (strengthening of H2), the martingale
writing leads to the exponential inequality

2.2
Pr( Z€> < 2exp<—n<00)€> for any € > 0.

M2
Enables to find the needed sample size n to ensure a - approxima-
tion :

tyr — ty
N

tyr —t
Pr( |
(=
needed when sampling in datastreams (work in progress with Emma-
nuelle Anceaume, Yann Busnel and Nicolo Rivetti).

26) < 9

Pivotal sampling seems particularly interesting for estimation on the
most recent units in the datastream (sliding window).
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Future work

Pivotal sampling is a particular case of the cube method (Deville and
Tillé, 2004), which enables to select balanced samples. A sampling
design is balanced on a set xj, of auxiliary variables if

tur(s) =t, for all s such that p(s) > 0.

A natural question is whether the statistical properties hold in the
general case.

Consistency + exponential inequality seems reachable.
The CLT seems more difficult.
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Future work

Other spatial sampling methods introduce more complex dependen-
cies in the selection of units :

» local pivotal method (Grafstrém et al., 2012) : at each step of
the pivotal method, the 2 nearest remaining units are treated.

» local cube method (Grafstrom and Tillg, 2013) : at each step
of the cube method, the p + 1 nearest remaining units are
treated.

Similar statistical properties are needed, but the sampling process is
informative = much more difficult.

Other fields where pivotal sampling (or other sampling methods) may
be of interest 7 (Gerber et al., 2018).
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