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Summary

There exists a large number of sampling algorithms, among which
systematic sampling is probably the most famous (Madow, 1949 ;
Tillé, 2006). It has found applications in a variety of �elds.

Systematic sampling enjoys good practical properties, but su�ers
from a lack of randomness. Some common statistical properties are
unlikely to hold, unless explicitly making strong model assumptions
(which we try to avoid).

Pivotal sampling appears as a good alternative. While possessing
also good practical properties, it introduces more randomness in the
sample selection ⇒ better statistical properties.

We consider an application for spatial sampling.
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Some (short) reminders on sampling

Properties of pivotal sampling

Spatial sampling

One step beyond
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Some (short) reminders on
sampling
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Notations
We are interested in a �nite population of statistical units

U = {1, . . . , k, . . . , N}.

Denote by y a variable of interest taking the value yk for some unit
k, and ty the total.

We note πk = Pr(k ∈ S) > 0 the selection probability of some unit
k. The sum

∑
k∈U πk ≡ n gives the average sample size.

By using a sampling design matching these inclusion probabilities,
the total ty is unbiasedly estimated by the Horvitz-Thompson (HT)
estimator

t̂yπ =
∑
k∈S

yk
πk

=
∑
k∈U

Ik
πk
yk, (1)

with Ik the sample membership indicator.
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Algorithms of sampling

Large number of sampling algorithms matching a prescribed set of
inclusion probabilities (see Tillé, 2006). We consider two of them :
systematic sampling and pivotal sampling.

Systematic sampling (Madow, 1949) consists in randomly selecting
a �rst unit, and then performing deterministic jumps to select the
remaining units.

Pivotal sampling (Deville and Tillé, 1998 ; Srinivasan, 2001) is based
on a principle of duels between units : the units �ght, until one of
them cumulates a su�cient probability so that a new selection is
possible.
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Systematic sampling on an example
Population U of size N = 11, with n = 3 and

π = (0.4 0.2 0.1 0.5 0.4 0.2 0.4 0.2 0.1 0.2 0.3)> .

0

V0

1 2 3

V11V1 V2V3 V4 V5 V6 V7 V8V9 V10

We represent the cumulated inclusion probabilities on a segment of
length n. Each sub-segment represents one unit.
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π = (0.4 0.2 0.1 0.5 0.4 0.2 0.4 0.2 0.1 0.2 0.3)> .

0

V0

1 2 3

V11V1 V2V3 V4 V5 V6 V7 V8V9 V10

We represent the cumulated inclusion probabilities on a segment of
length n. Each sub-segment represents one unit.
The sample is obtained through a random start u ∼ U [0, 1], followed
by jumps of length 1.

u = 0.82 ∈ [V3, V4] ⇒ unit 4 selected,

1 + u = 1.82 ∈ [V6, V7] ⇒ unit 7 selected,

2 + u = 2.82 ∈ [V10, V11] ⇒ unit 11 selected.
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Systematic sampling on an example (2)
Population U of size N = 11, with n = 3 and

π = (0.4 0.2 0.1 0.5 0.4 0.2 0.4 0.2 0.1 0.2 0.3)> .

0

V0

1 2 3

V11V1 V2V3 V4 V5 V6 V7 V8V9 V10

Very simple method, sequential, matching exactly the πk's. Exten-
sively used in surveys and in spatial sampling (Thompson, 2002 ;
Ripley, 2004).
One unit selected per microstratum ⇒ strati�cation e�ect.
Avoids the selection of neighbouring units ⇒ well-spread sample.
Drawbacks :

I une�cient if the variable of interest exhibits some periodicity,

I very few randomness ⇒ limited statistical properties.
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Pivotal sampling on an example

Population U of size N = 11, with n = 3 and

π = (0.4 0.2 0.1 0.5 0.4 0.2 0.4 0.2 0.1 0.2 0.3)> .

0 1 2 3
π1

1

π2

2

(π1, π2) = (0.4, 0.2) =

{
(0.6, 0) with proba 0.4/0.6,
(0, 0.6) with proba 0.2/0.6

If unit 2 survives, we get

π(1) = (0 0.6 0.1 0.5 0.4 0.2 0.4 0.2 0.1 0.2 0.3)> .
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Pivotal sampling on an example (2)

Population U of size N = 11, with n = 3.

π(1) = (0 0.6 0.1 0.5 0.4 0.2 0.4 0.2 0.1 0.2 0.3)> .

0 1 2 3
π1 + π2

2

π3

3

(π
(1)
2 , π

(1)
3 ) = (0.6, 0.1) =

{
(0.7, 0) with proba 0.6/0.7,
(0, 0.7) with proba 0.1/0.7

If unit 3 survives, we get

π(2) = (0 0 0.7 0.5 0.4 0.2 0.4 0.2 0.1 0.2 0.3)> .
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Pivotal sampling on an example (3)

Population U of size N = 11, with n = 3 and

π(3) = (0 0 0.7 0.5 0.4 0.2 0.4 0.2 0.1 0.2 0.3)> .

0 1 2 3
π1 + π2 + π3

3

π4

4

(π
(2)
3 , π

(2)
4 ) = (0.7, 0.5) =

{
(1, 0.2) with proba 0.5/(2− 1.2),
(0.2, 1) with proba 0.3/(2− 1.2)

If unit 3 wins, we get

π(3) = (0 0 1 0.2 0.4 0.2 0.4 0.2 0.1 0.2 0.3)> , . . .
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Pivotal sampling on an example (4)

Population U of size N = 11, with n = 3 and

π(3) = (0 0 0.7 0.5 0.4 0.2 0.4 0.2 0.1 0.2 0.3)> .

0 1 2 3

W1

b1

J1

(π
(2)
3 , π

(2)
4 ) = (0.7, 0.5) =

{
(1, 0.2) with proba 0.5/(2− 1.2),
(0.2, 1) with proba 0.3/(2− 1.2)

If unit 3 wins, we get

π(3) = (0 0 1 0.2 0.4 0.2 0.4 0.2 0.1 0.2 0.3)> , . . .

Unit 3 is the �rst winner (W1). Unit 4 is the �rst jumper (J1).
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Pivotal sampling on an example (5)

Population U of size N = 11, with n = 3 and

π = (0.4 0.2 0.1 0.5 0.4 0.2 0.4 0.2 0.1 0.2 0.3)> .

0 1 2 3

k = 3 k = 4 k = 9

Simple method, sequential, matching exactly the πk's.
One unit selected per microstratum ⇒ strati�cation e�ect.
Avoids the selection of neighbouring units ⇒ well-spread sample.
More randomness ⇒ good statistical properties.
Particular case of the cube method (Deville and Tillé, 2004).

16/40



Properties of pivotal sampling
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Asymptotic set-up and assumptions for CLT
Asymptotic set-up of Fuller (2011) : U belongs to a nested sequence
of populations of size N →∞.

H1 : Non-degenerate : ∃f0, f1 s.t.

0 < f0 ≤ πk ≤ f1 < 1 for any k ∈ U.

H2 : Finite moment of order 4 : ∃C1 s.t.∑
k∈U

πk

(
yk
πk
− ty
n

)4

≤ C1
N4

n3[
⇔ 1

N

∑
k∈U

(
yk −

ty
N

)4

≤ C1 if all π′ks =
n

N
.

]
H3 : Non-vanishing variance within microstrata : ∃C2 > 0 s.t.

n∑
i=1

∑
k∈Ui

αik

 yk
πk
−
∑
l∈Ui

αil
yl
πl

2

≥ C2
N2

n
.
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Comparison with multinomial sampling

Pivotal sampling design is always more e�cient than with-replacement
sampling of same size, a.k.a. multinomial sampling (Chauvet, 2017).

This leads to the variance inequality

Vp(t̂yπ) ≤
∑
k∈U

πk

(
yk
πk
− ty
n

)2

.

Under the assumption H2 (�nite 4th moment), the HT-estimator is
mean-square consistent for the true total :

Ep

[{
N−1

(
t̂yπ − ty

)}2]
= O(n−1).
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Martingale decomposition
Microstratum i− 1

i− 1 i

Ji−1

Microstratum i

Wi Ji

bi

t̂yπ − ty =

n∑
i=1

{
yWi

πWi

+ bi
yJi
πJi
− E{Fi−1}

[
yWi

πWi

+ bi
yJi
πJi

]}
︸ ︷︷ ︸

martingale di�erence sequence

,

t̂yπ − ty√
Vp(t̂yπ)

=

n∑
i=1

ηi.
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Central-limit theorem

Under Assumptions (H1)-(H3), the estimator t̂yπ is asymptotically
normally distributed (Chauvet and Le Gleut, 2018) :

t̂yπ − ty√
Vp(t̂yπ)

→L N (0, 1).

The proof is obtained by checking the su�cient conditions for a
martingale central-limit theorem given in Ohlsson (1986) :

Ep

(
n∑
i=1

η4i

)
→ 0,

n∑
i=1

E{Fi−1}(η
2
i ) →Pr 1.

Problem : design-unbiased variance estimation is not possible.
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Conservative variance estimator
To simplify, suppose n even. The di�erence variance estimator is

vDIFF (t̂yπ) =

n/2∑
i=1

(1 + δi)

(
yW2i

πW2i

−
yW2i−1

πW2i−1

)2

.

Omitting the δi's, this is the unbiased variance estimator in case of
strati�cation with n/2 strata, and multinomial sampling inside.

This estimator is always conservative (Chauvet and Le Gleut, 2018) :

Ep{vDIFF (t̂yπ)} ≥ Vp(t̂yπ).

Noting πM = maxπk, we have

δi ≤
π2M (1 + πM )

2(2− πM )
≤ 0.05 if πM ≤ 0.35.

With moderately large inclusion probabilities, we can safely consider :

vDIFF2(t̂yπ) =

n/2∑
i=1

(
yW2i

πW2i

−
yW2i−1

πW2i−1

)2

.



Spatial sampling

Joint with Ronan Le Gleut (Insee)
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Working model

In a context of spatial sampling, �rst law of geography of Tobler :
"Everything is related to everything else, but near things are more
related than distant things".

Working model of type (see Grafström and Tillé, 2013) :

yk = βπk + εk,

Em(εk) = 0 et Covm(εk, εl) = σkσlρ
d(k,l).

⇒ better to avoid selecting neighbouring units, which carry a similar
information.
⇒ better to spread well the sample over space.

More auxiliary information may be available, resulting in more e�-
cient sampling strategies (Grafström and Tillé, 2013).
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Systematic sampling on a regular grid

I A regular grid is randomly
placed on the area under
study.

I A sample of points is se-
lected on the grid via sys-
tematic sampling.

I The sample is spread over
space, but we may face
some unexpected periodi-
city.
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Generalized Random Tesselation Sampling (GRTS)
Stevens and Olsen (2004)
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Generalized Random Tesselation Sampling (GRTS)
Stevens and Olsen (2004)

I Tesselation of the area on a regular grid,
with "addresses".
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zation.
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Pivotal Tesselation Method

The GRTS method gives samples well spread over space (Stevens
and Olsen, 2004), but with systematic sampling the study of the
statistical properties of the HT-estimator is made di�cult (and not
sure to hold), even with a partial randomization.

We propose to use the tesselation method, but by replacing systema-
tic sampling by pivotal sampling. This leads to the Pivotal Tesselation
Method (PTM).

The sample is still well spread over space + HT-estimator consistent
and asymptotically normal.

Alternatively, pivotal sampling can be used with any spatial sampling
design with some form of ranking on units (e.g., Dickson and Tillé,
2016).
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A small simulation study
Example 5 of Grafström et al. (2012). Divide the unit square accor-
ding to a 20× 20 grid ⇒ population of N = 400 units.
Variable yk ≡ area within the cell under f(x1, x2) = 3(x1 + x2) +
sin{6(x1 + x2)}.

Samples of size n = 16, 32 or 48 with equal probabilities. Spatial
sampling designs :

I pivotal tesselation method (PTM),

I generalized random tesselation sampling (GRTS),

I local pivotal methods (LPM1 and LPM2 ; Grafström et al.,
2012).

I pivotal method through Traveling Salesman Problem order (TSP,
Dickson and Tillé, 2016).

I simple random sampling (SRS).

Computation of an indicator of spatial balance (Voronoi polygons)
+ variance associated to each sampling strategy.



Results

Table � Monte Carlo Mean of the spatial balance and Monte Carlo

Variance of the Horvitz-Thompson estimator for Population 1

PTM GRTS LPM1 LPM2 TSP SRS

EMC(∆)
n = 16 0.07 0.12 0.08 0.09 0.11 0.33
n = 32 0.08 0.11 0.07 0.07 0.10 0.30
n = 48 0.09 0.11 0.07 0.07 0.10 0.29

VMC(t̂yπ) (×100)
n = 16 1.53 2.49 1.94 1.96 2.65 12.48
n = 32 0.39 0.89 0.54 0.57 0.65 6.18
n = 48 0.16 0.34 0.26 0.27 0.28 3.91
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One step beyond
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Sampling in datastreams

Supposing that |yk| ≤ M (strengthening of H2), the martingale
writing leads to the exponential inequality

Pr

(∣∣∣∣ t̂yπ − tyN

∣∣∣∣ ≥ ε) ≤ 2 exp

(
−n(C0)

2ε2

M2

)
for any ε > 0.

Enables to �nd the needed sample size n to ensure a ε-δ approxima-
tion :

Pr

(∣∣∣∣ t̂yπ − tyN

∣∣∣∣ ≥ ε) ≤ δ,

needed when sampling in datastreams (work in progress with Emma-
nuelle Anceaume, Yann Busnel and Nicolo Rivetti).

Pivotal sampling seems particularly interesting for estimation on the
most recent units in the datastream (sliding window).

37/40



Future work

Pivotal sampling is a particular case of the cube method (Deville and
Tillé, 2004), which enables to select balanced samples. A sampling
design is balanced on a set xk of auxiliary variables if

t̂xπ(s) = tx for all s such that p(s) > 0.

A natural question is whether the statistical properties hold in the
general case.

Consistency + exponential inequality seems reachable.
The CLT seems more di�cult.
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Future work

Other spatial sampling methods introduce more complex dependen-
cies in the selection of units :

I local pivotal method (Grafström et al., 2012) : at each step of
the pivotal method, the 2 nearest remaining units are treated.

I local cube method (Grafström and Tillé, 2013) : at each step
of the cube method, the p+ 1 nearest remaining units are
treated.

Similar statistical properties are needed, but the sampling process is
informative ⇒ much more di�cult.

Other �elds where pivotal sampling (or other sampling methods) may
be of interest ? (Gerber et al., 2018).
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