# Determinantal sampling design

SMURF Workshop: Survey Methods and their use in Related Fields 20 - 22 August 2018, Neuchâtel, Switzerland

Loonis Vincent<sup>1</sup>, Mary Xavier<sup>2</sup>

<sup>1</sup> Insee, Spatial Method Unit <sup>2</sup> Université Paris Nanterre, Modal'X

September 2, 2018



#### Introduction

- A point process on a finite discrete set U is exactly a sampling design, that is to say a probability law on  $\mathcal{P}(U)$
- Among the various point processes, the Determinantal Point Process has attracted a lot of interest over the last years
- Due to its repulsiveness, Determinantal Point process is a good candidate for being fruitfully used in survey sampling theory.

#### Outline

This presentation mainly relies on Loonis, V. and Mary, X. (2018). Determinantal sampling designs. Journal of Statistical Planning and Inference.

- Definition and general properties of determinantal sampling designs (DSDs)
- Estimating a total
- Constructing fixed-size DSDs with prescribed first-order inclusion probabilities
- Constructing fixed-size DSDs with prescribed first and second order inclusion probabilities
- Perspectives

#### **Notations**

- U size N poputation indexed by k = 1, ..., N
- s subset of U
- S random sample
- $t_v$ ,  $t_x$  total of a variable of interest, and of an auxiliary variable
- Π size N vector of prescribed probabilities
- z complex number,  $\overline{z}$  its conjuguate, |z| its modulus (resp.  $A, \overline{A}$  for matrix A).
- ullet  $\lambda$  vector of eigenvalues

# Definition and general properties

- Definition
- Inclusion probabilities
- Sample size
- Sampling algorithm

#### **Definition**

#### Definition (Determinantal sampling design (Macchi (1975), Soshnikov (2000)))

A sampling design  $\mathcal{P}$  on a finite set U is a determinantal sampling design if there exists a Hermitian contracting matrix K indexed by U, called kernel, such that for all  $s \in 2^U$ ,  $\sum_{s' \supseteq s} \mathcal{P}(s') = \det(K_{|s})$ . This sampling design is denoted by DSD(K). A random variable  $\mathbb{S}$  with values in  $2^U$  and law DSD(K) is called a determinantal random sample (with kernel K). It satisfies, for all  $s \in 2^U$ ,

$$pr(s \subseteq \mathbb{S}) = \det(K_{|s}),$$

where  $K_{|s|}$  denotes the submatrix of K. whose rows and columns are indexed by s. We will also write  $\mathbb{S} \sim DSD(K)$ .

#### Remark

Determinantal sampling designs form a parametric family of sampling designs, parametrized by contracting matrices.

## Définition : example

$$\textit{K} = \begin{pmatrix} \frac{1}{2} & \frac{1}{\sqrt{10}} & \frac{\sqrt{3}}{2\sqrt{14}} & \frac{\sqrt{3}}{\sqrt{70}} & \frac{1}{\sqrt{35}} & \frac{1}{\sqrt{65}} & \frac{1}{2\sqrt{26}} \\ \frac{1}{\sqrt{10}} & \frac{1}{5} & \frac{\sqrt{3}}{2\sqrt{35}} & \frac{\sqrt{3}}{5\sqrt{7}} & \frac{\sqrt{2}}{5\sqrt{7}} & \frac{\sqrt{2}}{5\sqrt{13}} & \frac{1}{2\sqrt{65}} \\ \frac{\sqrt{3}}{2\sqrt{14}} & \frac{\sqrt{3}}{2\sqrt{35}} & \frac{3}{4} & -\frac{1}{2\sqrt{5}} & -\frac{1}{\sqrt{30}} & -\frac{\sqrt{7}}{\sqrt{390}} & -\frac{\sqrt{7}}{4\sqrt{39}} \\ \frac{\sqrt{3}}{\sqrt{70}} & \frac{\sqrt{3}}{5\sqrt{7}} & -\frac{1}{2\sqrt{5}} & \frac{4}{5} & -\frac{\sqrt{2}}{5\sqrt{3}} & -\frac{\sqrt{14}}{5\sqrt{39}} & -\frac{\sqrt{7}}{2\sqrt{195}} \\ \frac{1}{\sqrt{35}} & \frac{\sqrt{2}}{5\sqrt{7}} & -\frac{1}{2\sqrt{30}} & -\frac{\sqrt{2}}{5\sqrt{3}} & \frac{2}{5\sqrt{7}} & \frac{\sqrt{7}}{3\sqrt{30}} & -\frac{1}{2\sqrt{19}} \\ \frac{1}{\sqrt{65}} & \frac{\sqrt{2}}{5\sqrt{7}} & -\frac{\sqrt{7}}{\sqrt{390}} & -\frac{\sqrt{14}}{5\sqrt{39}} & \frac{2\sqrt{7}}{5\sqrt{13}} & \frac{3}{5} & -\frac{1}{\sqrt{10}} \\ \frac{1}{2\sqrt{26}} & \frac{1}{2\sqrt{65}} & -\frac{\sqrt{7}}{4\sqrt{39}} & -\frac{\sqrt{7}}{2\sqrt{195}} & \frac{\sqrt{7}}{\sqrt{730}} & -\frac{1}{\sqrt{10}} & \frac{3}{4} \end{pmatrix} \right) \\ pr(s = \{1\} \subseteq \mathbb{S}) = \det(\textit{K}_{|1}) = \det(\frac{1}{2}) = \frac{1}{2} = \pi_{1}, \pi_{3} = \frac{3}{4}, \pi_{5} = \frac{2}{5} \\ pr(s = \{3;5\} \subseteq \mathbb{S}) = \det(\textit{K}_{|\{3;5\}}) = \det\left(\frac{\frac{3}{4}}{-\frac{1}{\sqrt{30}}} & -\frac{\frac{1}{\sqrt{30}}}{\frac{\sqrt{2}}{5}} & \frac{1}{\sqrt{35}} & -\frac{1}{\sqrt{30}} \\ \frac{1}{\sqrt{25}} & -\frac{1}{\sqrt{30}} & \frac{3}{4} & -\frac{1}{\sqrt{30}} \\ \frac{2\sqrt{14}}{\sqrt{36}} & -\frac{1}{\sqrt{30}} & \frac{2}{5} \end{pmatrix} \right) = \frac{8}{105} = \pi_{135}$$

#### Inclusion probabilities

Let  $\mathbb{S} \sim DSD(K)$ .

$$\pi_k = pr(k \in \mathbb{S}) = \frac{K_{kk}}{k}, \tag{1}$$

$$\pi_{kl} = pr(k, l \in \mathbb{S}) = K_{kk}K_{ll} - |K_{kl}|^2 (k \neq l),$$
 (2)

$$\Delta_{kl} = \begin{cases} \pi_{kl} - \pi_k \pi_l = - |K_{kl}|^2 & (k \neq l), \\ \pi_k (1 - \pi_k) = K_{kk} (1 - K_{kk}) & (k = l). \end{cases}$$
(3)

it holds that

$$\Delta = \overline{(I_N - K)} * K = (I_N - K) * \overline{K},$$

where \* is the Schur-Hadamard (entrywise) matrix product.

#### Remark

From (3) a determinantal sampling design satisfies the so-called Sen-Yates-Grundy conditions:

$$\pi_{kl} \leq \pi_k \pi_l (k \neq l).$$

# Sample size

#### Theorem (Sample size (Hough et al. (2006)))

Let  $\mathbb{S} \sim DSD(K)$ . Then the random size  $\sharp \mathbb{S}$  of the random variable  $\mathbb{S}$  has the law of a sum of N independent Bernoulli variables  $B_1, \cdots, B_N$  of parameters  $\lambda_1, \cdots, \lambda_N$ , set of K's eigenvalues.

#### Corollary (Sample size (2))

Let  $\mathbb{S} \sim DSD(K)$ . Then

- $var(\sharp \mathbb{S}) = tr(K K^2) = \sum_{i=1}^{N} \lambda_i (1 \lambda_i) = \sum_{k,l \in U} \Delta_{kl}.$
- **3** DSD(K) is a fixed size determinantal sampling design iff K is a projection matrix.

# Sampling algorithm

#### Algorithm (Lavancier et al. (2015))

#### Let K be a projection matrix.

- **1** Find a (N, n) matrix V such that  $K = V\overline{V}^T$ . Let  $v_k^T$  be the  $k^{th}$  line of V.
- ② Sample one element  $k_n$  of U with probabilities  $\Pi_k^n = ||v_k||^2/n$ ,  $k \in U$ .
- 3 Set  $e_1 = v_{k_n}/||v_{k_n}||$ .
- **1** For i = (n-1) to 1 do:
  - **a** sample one  $k_i$  of U with probabilities

$$\Pi_k^i = \frac{1}{i} [||v_k||^2 - \sum_{j=1}^{j=n-i} |\overline{e_j}^T v_k|^2], \ k \in U,$$

**2** set 
$$w_i = v_{k_i} - \sum_{j=1}^{j=n-i} |\overline{e_j}^T v_{k_i}| e_j$$
 and  $e_{n-i+1} = w_i / ||w_i||$ .

- 6 End for.
- **1** Return  $\{k_1, \dots, k_n\}$ .

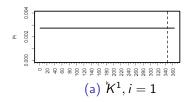
The resulting sample is a realization of DSD(K).

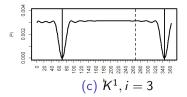
#### Remark

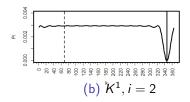
It is preferable to have a description of the matrix K directly in terms of V.

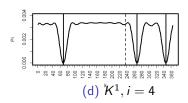
# Sampling algorithm

Figure 1: Example : Selecting an equal probability sample



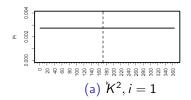


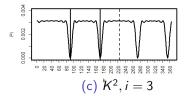


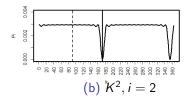


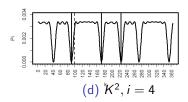
# Sampling algorithm

Figure 3: Example : Selecting an equal probability sample









# Estimating a total

- Linear homogeneous estimators
- Perfect estimation
- Central limit theorem

#### Linear homogeneous estimators

#### Definition

Let  $w_k, k \in U$  be N given reals, y be a variable of interest and  $\mathcal{P}$  be a sampling design, then  $\hat{t}_{yw} = \sum_{k \in \mathbb{S}} w_k y_k$ , with  $\mathbb{S} \sim \mathcal{P}$  is a linear homogeneous estimator of  $t_y$ , whose Mean Square Error writes

$$\mathrm{MSE}(\hat{t}_{yw}) \quad = \quad \overbrace{\sum_{k \in U} \sum_{l \in U} w_k w_l y_k y_l \Delta_{kl}}^{\mathrm{Variance}} + \left[ \overbrace{\sum_{k \in U} (w_k \pi_k - 1) y_k}^{\mathrm{Bias}} \right]^2$$

#### Example

- if  $\pi_k > 0$  for all  $k \in U$  and  $w_k = \pi_k^{-1}$ ,  $\hat{t}_{yHT} = \sum_{k \in \mathbb{S}} \pi_k^{-1} y_k$ , is known as the Horvitz-Thompson estimator
- Let x be a strictly positive auxiliary variable, then  $\hat{t}_{yw^{opt}}$ , where  $w_k^{opt} = (nx_k)^{-1}t_x$ , will perfectly estimate  $t_x$  for a fixed size  $\mathcal{P}$ .

# Optimal weights

#### Theorem (Optimal weights (Loonis and Mary (2018)))

Let  $\mathcal P$  be a sampling design whose first and second order probabilities are  $\pi_k$ ,  $\pi_{kl}$  ( $\pi_{kk}=\pi_k$ ) and  $x^1,\ldots,x^Q$  be Q vectors of auxiliary variables. The linear homogeneous estimators that minimize the sum of the Q MSEs correspond to weights  $w^{\text{opt}}$  in the affine subspace:

$$w^{opt} \in \left( \left( \sum_{q=1}^{Q} x^q x^{q^T} \right) * \Omega \right)^{\dagger} \left( \left( \sum_{q=1}^{Q} t_{x^q} x^q \right) * \pi \right) + \ker \left( \left( \sum_{q=1}^{Q} x^q x^{q^T} \right) * \Omega \right)$$

where  $\Omega = (\pi_{kl})$  is the joint probability matrix of  $\mathcal{P}$ ,  $\pi$  the vector of first order inclusion probabilities, and  $M^{\dagger}$  the Moore-Penrose inverse of a matrix M.

#### Perfect estimation

#### Theorem (Perfect Estimation (Loonis and Mary (2018)))

Assume y takes only non-zero values and let  $\mathbb{S} \sim DSD(K)$ , then

$$\mathrm{MSE}(\hat{t}_{yHT}) = \textit{var}(\hat{t}_{yHT}) \quad = \quad \left(\textit{diag}(K)^{-1} * y\right)^{T} \left((\textit{I}_{N} - K) * \overline{K}\right) \left(\textit{diag}(K)^{-1} * y\right)$$

and the total  $t_y$  is perfectly estimated by  $\hat{t}_{yHT}$  ( $var(\hat{t}_{yHT}=0)$ ) iff DSD(K) is a stratified determinantal sampling design of fixed size within each stratum, and with  $\pi_{\nu}^{-1}y_k$  constant on each stratum.

# Asymptotic theory

#### Theorem (Central Limit Theorem (Soshnikov (2002)))

Let  $\mathbb{S} \sim DSD(K)$ . Define for all  $N \in \mathbb{N}$  the homogeneous linear estimators

$$\hat{\mathfrak{t}}_{yw} = \sum_{k \in \mathbb{S}} w_k y_k$$
 and  $\hat{\mathfrak{t}}_{|y|w} = \sum_{k \in \mathbb{S}} w_k |y_k|$ 

If the variance  $\text{var}(\hat{t}_{yw}) \to +\infty$  as  $\mathsf{N} \to \infty$  and if

$$\sup_{k \in U_N} |w_k y_k| = o\left(var(\hat{t}_{yw})\right)^\epsilon \ \ \text{and} \ \ E(\hat{t}_{|y|w}) = O\left(var(\hat{t}_{yw})\right)^\delta$$

for any  $\epsilon > 0$  and some  $\delta > 0$ , then

$$rac{\hat{t}_{yw} - E(\hat{t}_{yw})}{\sqrt{\textit{var}(\hat{t}_{yw})}} \stackrel{\textit{law}}{
ightarrow} \mathcal{N}(0,1).$$

# Constructing a fixed size determinantal sampling design with prescribed first order inclusion probabilities

- General properties
- A closed form DSDs with any set of inclusion probabilities
  - Description and construction algorithm
  - Practical application (balancing on one variable, well spatially spread sampling).
- Going one step further with optimization routines.

## **General Properties**

Constructing a fixed size determinantal sampling design with prescribed first order inclusion probabilities

- is equivalent to constructing a projection matrix with a prescribed diagonal,
- is a particular case of the more general issue of constructing Hermitian matrices with prescribed diagonal and spectrum.

#### General properties

A non-constructive proof of the existence of Hermitian matrices with prescribed diagonal and spectrum (in the context of DSDs)

Theorem (Schur (1911), Horn (1954))

Let  $\Pi$  and  $\lambda$  be two vectors of  $[0,1]^N$  and  $\Pi_{(k)}$  (resp.  $\lambda_{(k)}$ ) denotes the k-th largest entry of  $\Pi$  (resp.  $\lambda$ ), there exists a kernel K with diagonal  $\Pi$  and spectrum  $\lambda$  if and only if  $\lambda$  dominates  $\Pi$ 

## General properties

A constructive proof of the existence of a real projection with prescribed diagonal, that nevertheless does not provide a closed form for the matrix.

Theorem (Kadison (2002))

Let  $\Pi$  a vector of  $[0,1]^N$  such that  $\sum_{k=1}^N \Pi_k = n \in \mathbb{N}^*$  there exists a fixed size DSD whose kernel is real with diagonal  $\Pi$ .

# A closed form: description

Let  $\Pi$  be a vector of size N such that  $0<\Pi_k<1$  and  $\sum_{k\in U}\Pi_k=n\in\mathbb{N}^*$ . For all integer r such that  $1\leq r\leq n$ , let

- $1 < k_r \le N$  be the integer such that  $\sum_{k=1}^{k_r-1} \Pi_k < r$  and  $\sum_{k=1}^{k_r} \Pi_k \ge r$ ,
- $\bullet \ \alpha_{k_r} = r \sum_{k=1}^{k_r 1} \Pi_k$
- $\bullet \ \, \gamma_r^{r'} = \sqrt{\prod_{j=r+1}^{r'} \frac{(\Pi_{k_j} \alpha_{k_j}) \alpha_{k_j}}{(1 \alpha_{k_j})(1 (\Pi_{k_j} \alpha_{k_j}))}} \ \, \text{for} \, \, r < r', \, \gamma_r^{r'} = 1 \, \, \text{otherwise}.$



Figure 5: Example: N = 11 and n = 3.

## A closed form: description

Define the real symmetric kernel  $P^{\Pi}$  as follows:

- for all  $1 \leq k \leq N$ ,  $P_{kk}^{\Pi} = \Pi_k$ ,
- for all k > l:  $P_{kl}^{\Pi}$  is computed according to formulas in table 1.

Table 1: Values of  $P_{\nu I}^{\Pi}: k > I$ 

|                         | Values of I                                                                                                            |                                                                        |  |  |  |  |  |  |  |
|-------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Values of k             | $I = k_r$                                                                                                              | $k_r < l < k_{r+1}$                                                    |  |  |  |  |  |  |  |
| $k_{r'} < k < k_{r'+1}$ | $-\sqrt{\Pi_k}\sqrt{\frac{(1-\Pi_l)(\Pi_l-\alpha_l)}{1-(\Pi_l-\alpha_l)}}\gamma_r^{r'}$                                | $\sqrt{\prod_k \prod_l} \gamma_r^{r'}$                                 |  |  |  |  |  |  |  |
| $k=k_{r'+1}$            | $-\sqrt{\frac{(1-\Pi_k)\alpha_k}{1-\alpha_k}}\sqrt{\frac{(1-\Pi_l)(\Pi_l-\alpha_l)}{1-(\Pi_l-\alpha_l)}}\gamma_r^{r'}$ | $\sqrt{\frac{(1-\Pi_k)\alpha_k}{1-\alpha_k}}\sqrt{\Pi_l}\gamma_r^{r'}$ |  |  |  |  |  |  |  |

#### Theorem (Loonis and Mary (2018))

The matrix  $P^{\Pi}$  is a real projection matrix, and  $DSD(P^{\Pi})$  is a fixed size sampling design with first order inclusion probabilities  $\pi_k = \Pi_k, 1 \le k \le N$ .

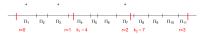
## A closed form: description

#### Corollary

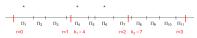
Let  $P^{\Pi}$  be the matrix previously constructed, and  $DSD(P^{\Pi})$  the associated sampling design.

- **1** If  $(k, l) \in ]k_r, k_{r+1}[^2 \text{ then } \pi_{kl} = 0.$
- ② If  $j \in ]k_r, k_{r+1}[, k = k_{r+1}, l \in ]k_{r+1}, k_{r+2}[$  then  $\pi_{jkl} = 0$ .
- **3** Set  $B_r = [1, k_r + 1]$ . Then the random sample  $\mathbb S$  has r or r + 1 elements in  $B_r$ .
- **4** If k-1 is large then  $P_{kl}^{\Pi}\approx 0$ , and  $\pi_{kl}\approx \Pi_k\Pi_l$ .
- **1** Let  $r_1, \ldots, r_H$  be the set of values of  $1 \le r \le n$  such that  $\sum_{k=1}^{k_r} \Pi_k = r$ , and set  $r_0 = 0$ . Then  $DSD(P^{\Pi})$  is stratified with H strata  $]k_{r_{h-1}}, k_{r_h}]$ .

Figure 6: Examples of unfeasible samples  $\mathbb{S} \sim DSD(P^{\Pi})$ . n=3. N=11



(a) impossible according to Point 1



(b) impossible according to Point 2

# A closed form: Construction algorithm

#### Algorithm (Rank one decomposition for $P^{\Pi}$ )

- **1** For  $k \in U$ , let  $s_k$  and  $c_k$  be
  - if  $\exists r | k = k_r$ ,  $s_{k_r} = \sqrt{\frac{1 \Pi_{k_r}}{1 \alpha_{k_r}}}$ ,  $s_k = \sqrt{\frac{\Pi_k}{r + 1 \sum\limits_{i=1}^{k-1} \Pi_i}}$  otherwise
  - $c_k = \sqrt{1 s_k^2}$
- ② Let V be a (N, n) matrix whose entries equal 0 apart from  $V_{k_r+1,r}$  (r = 0, ..., n-1) that equals 1. Let  $V_k^T$  be the  $k^{th}$  line of V.
- **3** For k = 1, ..., N-1

  - $2 \quad \textit{Compute } L_2^T = c_k V_k^T + s_k V_{k+1}^T$
  - **3** Replace  $V_k^T$  (resp.  $V_{k+1}^T$ ) by  $L_1^T$  (resp  $L_2^T$ ).

#### Remark

Using SAS, V is computed in less than 9 seconds with N = 100~000 et n = 1~000.

# Practical application

- The French master sample for household surveys is drawn according to a two-stage sampling design.
- We consider the first stage that consists of thousands of geographical entities (PSUs) with proportional to size inclusion probabilities.
- We aim at drawing a sample that is balanced on one auxiliary variable or that is spatially well spread.



# Balancing on one auxiliary variable

- Let N=4000, and n=30,  $60, \dots, 630$
- Let  $\Pi_k = n \frac{d_k}{t_d}$  where  $d_k$  is the number of dwellings in PSU K.
- Let x<sub>k</sub> be an auxiliary variables for PSU k (total amount of wages for example).
- Let U (population of PSUs) be sorted by  $\frac{x_k}{\Pi_L}$ .
- We consider three different sampling designs, DSD(P<sup>Π</sup>), Cube method, and systematic sampling.
- We compute for each sampling design and each sample size  $CV(\hat{t}_x) = \frac{\sqrt{V(\hat{t}_x)}}{t_x}$ , where  $\hat{t}_x$  is the Horvitz-Thompson estimator of  $t_x$ .
- For DSD(P<sup>Π</sup>), V(î<sub>x</sub>) is known exactly whereas it is estimated with Monte Carlo methods for the other methods.

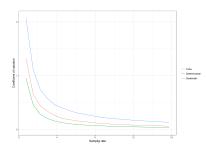


Figure 8:  $DSD(P^{\Pi})$  performs better than its *opponents*.

# Spatial Determinantal sampling

- GRTS is a well known spatial sampling method.
- It consists in drawing a path through the location of the units and selecting the units along the path according to a systematic sampling.
- There exists various ways to construct such a path (GRTS, TSP, Hamilton...)
- We suggest ordering the units according to the path and selecting the units with a DSD(P<sup>Π</sup>)
- We compute the variance of the HT-estimator for several auxiliary variables with a Moran-Index ranging from 0.1 to 0.8.





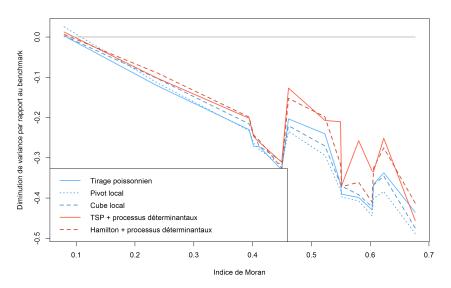


(b) TSP path



(C) Hamilton path

# Spatial determinantal sampling



# Going one step further

- $\bullet$   $P^{\Pi}$  proves useful for balanced sampling (one auxiliary variable) or for spatial sampling
- What about balancing on more than one auxiliary variable, or achieving other goals?
- Let C(K) be a criteria to be minimized subject to K being a contracting matrix with at least a given trace, for instance:

$$C(K) = \sum_{q=1}^{Q} V(\hat{t}_{x^q})$$

- Solving min C(K) falls within the scope of non-linear semi-definite optimization that can be tough.
- We aim at finding heuristics relying on  $P^{\Pi}$ .

## Going one step further

To do so, the following well known result proves very uselful

Proposition (Unitary transform)

Let  $K \in \mathcal{M}_{N \times N}(\mathcal{C})$  be a contracting matrix and  $\mathbb{S} \sim DSD(K)$ . Let also  $W \in \mathcal{M}_{N \times N}(\mathcal{C})$  be a unitary matrix  $(W\overline{W}^T = I_N)$ . Then  $K_W = WK\overline{W}^T$  is a Hermitian matrix with the same eigenvalues as K.

#### Remark

 $K_w$  has not necessarily the same diagonal entries as K. Let  $W(\rho)$  be a large enough parametrized family of unitary matrices, solving min C(K) can be approximated by solving min  $C(K_{W(\rho)})$ .

# Going one step Further

- We aim at minimizing  $C(K) = \sum_{q=1}^{Q} V(\hat{t}_{x^q})$  subject to prescribed inclusion probabilities.
- We consider an ordered population U and the associated  $P^{\Pi}$
- We use the following unitary matrix

# Going one step further

- For any (k, l) and any  $\theta$  in  $U^2$ ,  $W_{kl}(\theta)P^{\Pi}W_{kl}^{T}(\theta)$  is a projection matrix as well (The spectrum remains unchanged).
- If  $\Pi_k \neq \Pi_l$  choosing  $\theta_{kl}$  such that

$$t = \frac{2P_{kl}^{\Pi}}{K_{kk} - K_{ll}}, \cos\theta_{kl} = \frac{1}{\sqrt{1 + t^2}}$$
 and  $\sin\theta_{kl} = t\cos\theta_{kl}$ .

does not change the diagonal either (Dhillon et al. (2005)).

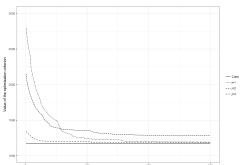
#### Algorithm

- Let  $K^0 = P^{\Pi}$
- for r = 1 to R (fixed in advance) do:
  - For each (k, l) in  $U^2$  such that  $\Pi_k \neq \Pi_l$  compute  $\theta_{kl}^r$
  - 2 Define  $(k^r, l^r) = \underset{(k,r) \in I^2}{\operatorname{argmin}} C(W_{kl}(\theta_{kl}^r)K_j^{r-1}W_{kl}^T(\theta_{kl}^r));$
  - **3** Set  $K^r = W_{k^r l^r}(\theta^r_{k^r l^r}) K^{r-1} W_{k^r l^r}^T(\theta^r_{k^r l^r})$  and r = r + 1.

# Going one step further

Implementing the previous algorithm with N=148 PSUs and n=14 for Q=2 auxiliary variables  $x^1$  and  $x^2$  (total amount of unemployement benefits and of taxable income).

Figure 10: Evolution of the optimization criterion, DSDs perform as good as the cube.



The curves j=1,2,3 correspond respectively to 3 different marking methods: by  $x_k^2/\Pi_k$  (j=1), by  $(x_k^2+x_k^3)/\Pi_k$  (j=2) and by the Hamilton path (j=3).

# Constructing fixed-size DSDs with prescribed first and second order inclusion probabilities

- Apart from n = 1 or n = N 1, SRS is not a determinantal sampling design.
- Does there exist K such that DSD(K) has the same first and second order probabilities as a SRS ? That is to say ,
  - K is a projection matrix,
  - $\pi_k = K_{kk} = \frac{n}{N}$
  - $\pi_{kl} = K_{kk}K_{kk} |K_{kk}|^2 = \frac{n(n-1)}{N(N-1)} \iff |K_{kk}|^2 = \frac{n(N-n)}{N^2(N-1)}$ .
- Finding such a kernel is equivalent to finding an Equiangular Tight Frame (ETF).
- Many results on the existence of such frames are available in the corresponding literature.

# Constructing fixed-size DSDs with prescribed first and second order inclusion probabilities

Table 2: Existence of (N, n)-simple determinantal sampling designs, depending on the kernel type (real or complex) for n < 9.

| n | 3            | 3            | 4            | 4            | 5            | 5            | 6            | 6            | 6            | 7            | 7            | 7            | 8            | 8            | 8            |
|---|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| N | 6            | 7            | 7            | 13           | 10           | 11           | 11           | 16           | 31           | 14           | 15           | 28           | 15           | 29           | 57           |
|   | $\mathbb{R}$ | $\mathbb{C}$ | $\mathbb{C}$ | $\mathbb{C}$ | $\mathbb{R}$ | $\mathbb{C}$ | $\mathbb{C}$ | $\mathbb{R}$ | $\mathbb{C}$ | $\mathbb{R}$ | $\mathbb{C}$ | $\mathbb{R}$ | $\mathbb{C}$ | $\mathbb{C}$ | $\mathbb{C}$ |

- For a given family of (non-determinantal) sampling designs, there may or may not exist a DSD with the same first and second order inclusion probabilities;
- ② There exists a DSD(C), C complex kernel such that no DSD(R), R real kernel has the same first and second order inclusion probabilities. This plaids in favor of using complex kernels.

# Perspectives

- Implementing the selection algorithm efficiently;
- Delving deeper into the properties of  $P^{\Pi}$ ;
- Delving deeper into complex kernels;
- Delving deeper in optimization algorithm.



#### References I

- Dhillon, I. S., Heath Jr, R. W., Sustik, M. A., and Tropp, J. A. (2005). Generalized finite algorithms for constructing hermitian matrices with prescribed diagonal and spectrum. *SIAM Journal on Matrix Analysis and Applications*, 27(1):61–71.
- Horn, A. (1954). Doubly stochastic matrices and the diagonal of a rotation matrix. *American Journal of Mathematics*, 76(3):620–630.
- Hough, J. B., Krishnapur, M., Peres, Y., Virág, B., et al. (2006). Determinantal processes and independence. *Probability surveys*, 3:206–229.
- Kadison, R. V. (2002). The pythagorean theorem: I. the finite case. *Proceedings of the National Academy of Sciences*, 99(7):4178–4184.
- Lavancier, F., Møller, J., and Rubak, E. (2015). Determinantal point process models and statistical inference. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 77(4):853–877.

#### References II

- Loonis, V. and Mary, X. (2018). Determinantal sampling designs. *Journal of Statistical Planning and Inference*.
- Macchi, O. (1975). The coincidence approach to stochastic point processes. *Advances in Applied Probability*, pages 83–122.
- Schur, J. (1911). Bemerkungen zur theorie der beschränkten bilinearformen mit unendlich vielen veränderlichen. *Journal für die reine und Angewandte Mathematik*, 140:1–28.
- Soshnikov, A. (2000). Determinantal random point fields. *Russian Mathematical Surveys*, 55(5):923–975.
- Soshnikov, A. (2002). Gaussian limit for determinantal random point fields. *Annals of probability*, pages 171–187.