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Introduction

A point process on a finite discrete set U is exactly a sampling design,
that is to say a probability law on P(U)

Among the various point processes, the Determinantal Point Process
has attracted a lot of interest over the last years

Due to its repulsiveness, Determinantal Point process is a good
candidate for being fruitfully used in survey sampling theory.
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Outline

This presentation mainly relies on Loonis, V. and Mary, X. (2018).
Determinantal sampling designs. Journal of Statistical Planning and
Inference.

1 Definition and general properties of determinantal sampling designs
(DSDs)

2 Estimating a total

3 Constructing fixed-size DSDs with prescribed first-order inclusion
probabilities

4 Constructing fixed-size DSDs with prescribed first and second order
inclusion probabilities

5 Perspectives
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Notations

U size N poputation indexed by k = 1, . . . ,N

s subset of U

S random sample

ty , tx total of a variable of interest, and of an auxiliary variable

Π size N vector of prescribed probabilities

z complex number, z its conjuguate, |z | its modulus (resp. A,A for
matrix A).

λ vector of eigenvalues
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Definition and general properties

Definition

Inclusion probabilities

Sample size

Sampling algorithm
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Definition

Definition (Determinantal sampling design (Macchi (1975), Soshnikov (2000)))

A sampling design P on a finite set U is a determinantal sampling design if there
exists a Hermitian contracting matrix K indexed by U, called kernel, such that for
all s ∈ 2U ,

∑
s′⊇s P(s ′) = det(K|s). This sampling design is denoted by DSD(K ).

A random variable S with values in 2U and law DSD(K ) is called a determinantal
random sample (with kernel K ). It satisfies, for all s ∈ 2U ,

pr(s ⊆ S) = det(K|s),

where K|s denotes the submatrix of K . whose rows and columns are indexed by
s. We will also write S ∼ DSD(K ).

Remark

Determinantal sampling designs form a parametric family of sampling designs,
parametrized by contracting matrices.
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Définition : example
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Inclusion probabilities

Let S ∼ DSD(K ).

πk = pr(k ∈ S) = Kkk , (1)

πkl = pr(k , l ∈ S) = KkkKll− | Kkl |2 (k 6= l), (2)

∆kl =

{
πkl − πkπl = − | Kkl |2 (k 6= l),
πk(1− πk) = Kkk(1− Kkk) (k = l).

(3)

it holds that
∆ = (IN − K ) ∗ K = (IN − K ) ∗ K ,

where ∗ is the Schur-Hadamard (entrywise) matrix product.

Remark

From (3) a determinantal sampling design satisfies the so-called
Sen-Yates-Grundy conditions:

πkl ≤ πkπl (k 6= l).
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Sample size

Theorem (Sample size (Hough et al. (2006)))

Let S ∼ DSD(K ). Then the random size ]S of the random variable S has
the law of a sum of N independent Bernoulli variables B1, · · · ,BN of
parameters λ1, · · · , λN , set of K ′s eigenvalues.

Corollary (Sample size (2))

Let S ∼ DSD(K ). Then

1 E (]S) = tr(K ).

2 var(]S) = tr(K − K 2) =
N∑
i=1

λi (1− λi ) =
∑
k,l∈U

∆kl .

3 DSD(K ) is a fixed size determinantal sampling design iff K is a
projection matrix.
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Sampling algorithm

Algorithm (Lavancier et al. (2015))

Let K be a projection matrix.

1 Find a (N, n) matrix V such that K = VV
T
. Let vT

k be the kth line of V .

2 Sample one element kn of U with probabilities Πn
k = ||vk ||2/n, k ∈ U.

3 Set e1 = vkn/||vkn ||.

4 For i = (n-1) to 1 do:

1 sample one ki of U with probabilities
Πi

k = 1
i [||vk ||2 −

∑j=n−i
j=1 |ej T vk |2], k ∈ U,

2 set wi = vki −
∑j=n−i

j=1 |ej T vki |ej and en−i+1 = wi/||wi ||.
5 End for.

6 Return {k1, · · · , kn}.
The resulting sample is a realization of DSD(K).

Remark

It is preferable to have a description of the matrix K directly in terms of V .
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Sampling algorithm

Figure 1: Example : Selecting an equal probability sample

(a) K 1, i = 1 (b) K 1, i = 2

(c) K 1, i = 3 (d) K 1, i = 4
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Sampling algorithm

Figure 3: Example : Selecting an equal probability sample

(a) K 2, i = 1 (b) K 2, i = 2

(c) K 2, i = 3 (d) K 2, i = 4
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Estimating a total

1 Linear homogeneous estimators

2 Perfect estimation

3 Central limit theorem
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Linear homogeneous estimators

Definition

Let wk , k ∈ U be N given reals, y be a variable of interest and P be a
sampling design, then t̂yw =

∑
k∈S wkyk , with S ∼ P is a linear

homogeneous estimator of ty , whose Mean Square Error writes

MSE(t̂yw ) =

Variance︷ ︸︸ ︷∑
k∈U

∑
l∈U

wkwlykyl∆kl +


Bias︷ ︸︸ ︷∑

k∈U

(wkπk − 1)yk


2

Example

if πk > 0 for all k ∈ U and wk = π−1
k , t̂yHT =

∑
k∈S π

−1
k yk , is known

as the Horvitz-Thompson estimator

Let x be a strictly positive auxiliary variable, then t̂ywopt , where
wopt
k = (nxk)−1tx , will perfectly estimate tx for a fixed size P.
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Optimal weights

Theorem (Optimal weights (Loonis and Mary (2018)))

Let P be a sampling design whose first and second order probabilities are
πk , πkl (πkk = πk) and x1, . . . , xQ be Q vectors of auxiliary variables. The
linear homogeneous estimators that minimize the sum of the Q MSEs
correspond to weights wopt in the affine subspace:

w opt ∈

((
Q∑

q=1

xqxqT

)
∗ Ω

)†(( Q∑
q=1

txqx
q

)
∗ π

)
+ ker

((
Q∑

q=1

xqxqT

)
∗ Ω

)

where Ω = (πkl) is the joint probability matrix of P, π the vector of first
order inclusion probabilities, and M† the Moore-Penrose inverse of a
matrix M.
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Perfect estimation

Theorem (Perfect Estimation (Loonis and Mary (2018)))

Assume y takes only non-zero values and let S ∼ DSD(K ), then

MSE(t̂yHT ) = var(t̂yHT ) = (diag(K)−1 ∗ y) T ((IN − K) ∗ K)(diag(K)−1 ∗ y)

and the total ty is perfectly estimated by t̂yHT (var(t̂yHT = 0)) iff
DSD(K ) is a stratified determinantal sampling design of fixed size within
each stratum, and with π−1

k yk constant on each stratum.
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Asymptotic theory

Theorem (Central Limit Theorem (Soshnikov (2002)))

Let S ∼ DSD(K ). Define for all N ∈ N the homogeneous linear estimators

t̂yw =
∑
k∈S

wkyk and t̂|y |w =
∑
k∈S

wk |yk |

If the variance var(t̂yw )→ +∞ as N →∞ and if

sup
k∈UN

|wkyk | = o
(
var(t̂yw )

)ε
and E (t̂|y |w ) = O

(
var(t̂yw )

)δ
for any ε > 0 and some δ > 0, then

t̂yw − E (t̂yw )√
var(t̂yw )

law→ N (0, 1).
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Constructing a fixed size determinantal sampling design
with prescribed first order inclusion probabilities

General properties

A closed form DSDs with any set of inclusion probabilities

Description and construction algorithm
Practical application (balancing on one variable, well spatially spread
sampling).

Going one step further with optimization routines.
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General Properties

Constructing a fixed size determinantal sampling design with prescribed
first order inclusion probabilities

is equivalent to constructing a projection matrix with a prescribed
diagonal,

is a particular case of the more general issue of constructing
Hermitian matrices with prescribed diagonal and spectrum.
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General properties

A non-constructive proof of the existence of Hermitian matrices with
prescribed diagonal and spectrum (in the context of DSDs)

Theorem (Schur (1911), Horn (1954))

Let Π and λ be two vectors of [0, 1]N and Π(k) (resp. λ(k)) denotes the
k-th largest entry of Π (resp. λ), there exists a kernel K with diagonal Π
and spectrum λ if and only if λ dominates Π

k ′=k∑
k ′=1

λ(k ′) ≥
k ′=k∑
k ′=1

Π(k ′) for all k = 1, . . . ,N − 1

k=N∑
k ′=1

λk =
k=N∑
k=1

Πk

Loonis Vincent1, Mary Xavier2 (1 Insee, Spatial Method Unit 2 Université Paris Nanterre, Modal’X )neufchatel September 2, 2018 20 / 40



General properties

A constructive proof of the existence of a real projection with prescribed
diagonal, that nevertheless does not provide a closed form for the matrix.

Theorem (Kadison (2002))

Let Π a vector of [0, 1]N such that
∑N

k=1 Πk = n ∈ N∗ there exists a fixed
size DSD whose kernel is real with diagonal Π.

Loonis Vincent1, Mary Xavier2 (1 Insee, Spatial Method Unit 2 Université Paris Nanterre, Modal’X )neufchatel September 2, 2018 21 / 40



A closed form : description

Let Π be a vector of size N such that 0 < Πk < 1 and
∑

k∈U Πk = n ∈ N∗. For all
integer r such that 1 ≤ r ≤ n, let

1 < kr ≤ N be the integer such that
kr−1∑
k=1

Πk < r and
kr∑
k=1

Πk ≥ r ,

αkr = r −
kr−1∑
k=1

Πk

γr′
r =

√
r′∏

j=r+1

(Πkj
−αkj

)αkj

(1−αkj
)(1−(Πkj

−αkj
))

for r < r ′, γr′
r = 1 otherwise.

Figure 5: Example: N = 11 and n = 3.
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A closed form : description

Define the real symmetric kernel PΠ as follows:

for all 1 ≤ k ≤ N, PΠ
kk = Πk ,

for all k > l : PΠ
kl is computed according to formulas in table 1.

Table 1: Values of PΠ
kl : k > l

Values of l
Values of k l = kr kr < l < kr+1

kr′ < k < kr′+1 −
√

Πk

√
(1−Πl )(Πl−αl )

1−(Πl−αl )
γr′
r

√
ΠkΠlγ

r′
r

k = kr′+1 −
√

(1−Πk )αk
1−αk

√
(1−Πl )(Πl−αl )

1−(Πl−αl )
γr′
r

√
(1−Πk )αk

1−αk

√
Πlγ

r′
r

Theorem (Loonis and Mary (2018))

The matrix PΠ is a real projection matrix, and DSD(PΠ) is a fixed size sampling design
with first order inclusion probabilities πk = Πk , 1 ≤ k ≤ N.
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A closed form : description

Corollary

Let PΠ be the matrix previously constructed, and DSD(PΠ) the associated sampling
design.

1 If (k, l) ∈]kr , kr+1[2 then πkl = 0.

2 If j ∈]kr , kr+1[, k = kr+1, l ∈]kr+1, kr+2[ then πjkl = 0.

3 Set Br = [1, kr + 1]. Then the random sample S has r or r + 1 elements in Br .

4 If k − l is large then PΠ
kl ≈ 0, and πkl ≈ ΠkΠl .

5 Let r1, . . . , rH be the set of values of 1 ≤ r ≤ n such that
∑kr

k=1 Πk = r , and set
r0 = 0. Then DSD(PΠ) is stratified with H strata ]krh−1 , krh ].

Figure 6: Examples of unfeasible samples S ∼ DSD(PΠ), n = 3, N = 11

(a) impossible according to Point 1 (b) impossible according to Point 2
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A closed form : Construction algorithm

Algorithm (Rank one decomposition for PΠ)

1 For k ∈ U, let sk and ck be

if ∃r |k = kr , skr =
√

1−Πkr

1−αkr
, sk =

√
Πk

r+1−
k−1∑
i=1

Πi

otherwise

ck =
√

1− s2
k

2 Let V be a (N, n) matrix whose entries equal 0 apart from Vkr +1,r

(r = 0, . . . , n − 1) that equals 1. Let V T
k be the k th line of V .

3 For k = 1, . . . ,N − 1

1 Compute LT1 = skV
T
k − ckV

T
k+1

2 Compute LT2 = ckV
T
k + skV

T
k+1

3 Replace V T
k (resp. V T

k+1) by LT1 (resp LT2 ).

Remark

Using SAS, V is computed in less than 9 seconds with N = 100 000 et n = 1 000.
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Practical application

The French master sample for
household surveys is drawn according to
a two-stage sampling design.

We consider the first stage that consists
of thousands of geographical entities
(PSUs) with proportional to size
inclusion probabilities.

We aim at drawing a sample that is
balanced on one auxiliary variable or
that is spatially well spread.
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Balancing on one auxiliary variable

Let N=4000, and n=30, 60, . . . , 630

Let Πk = n dk
td

where dk is the number

of dwellings in PSU K .

Let xk be an auxiliary variables for PSU
k (total amount of wages for example).

Let U (population of PSUs) be sorted
by xk

Πk
.

We consider three different sampling
designs, DSD(PΠ), Cube method, and
systematic sampling.

We compute for each sampling design

and each sample size CV (t̂x ) =

√
V (t̂x )

tx
,

where t̂x is the Horvitz-Thompson
estimator of tx .

For DSD(PΠ), V (t̂x ) is known exactly
whereas it is estimated with Monte
Carlo methods for the other methods.

Figure 8: DSD(PΠ) performs better
than its opponents.
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Spatial Determinantal sampling

GRTS is a well known spatial sampling
method.

It consists in drawing a path through
the location of the units and selecting
the units along the path according to a
systematic sampling.

There exists various ways to construct
such a path (GRTS, TSP, Hamilton...)

We suggest ordering the units according
to the path and selecting the units with
a DSD(PΠ)

We compute the variance of the
HT-estimator for several auxiliary
variables with a Moran-Index ranging
from 0.1 to 0.8.

(a) GRTS path

(b) TSP path

(c) Hamilton path
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Spatial determinantal sampling
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Going one step further

PΠ proves useful for balanced sampling (one auxiliary variable) or for
spatial sampling

What about balancing on more than one auxiliary variable, or
achieving other goals ?

Let C (K ) be a criteria to be minimized subject to K being a
contracting matrix with at least a given trace, for instance:

C (K ) =
Q∑

q=1

V (t̂xq)

Solving minC (K ) falls within the scope of non-linear semi-definite
optimization that can be tough.

We aim at finding heuristics relying on PΠ.
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Going one step further

To do so, the following well known result proves very uselful

Proposition (Unitary transform)

Let K ∈MN×N(C) be a contracting matrix and S ∼ DSD(K ). Let also

W ∈MN×N(C) be a unitary matrix (WW
T

= IN). Then KW = WKW
T

is a Hermitian matrix with the same eigenvalues as K.

Remark

Kw has not necessarily the same diagonal entries as K.
Let W (ρ) be a large enough parametrized family of unitary matrices,
solving minC (K ) can be approximated by solving minC (KW (ρ)).
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Going one step Further

We aim at minimizing C (K ) =
∑Q

q=1 V (t̂xq) subject to prescribed
inclusion probabilities.

We consider an ordered population U and the associated PΠ

We use the following unitary matrix

Wkl(θ) =



1 0 . . . 0 0 0 . . . 0 0 0 . . . 0
0 1 . . . 0 0 0 . . . 0 0 0 . . . 0

0 0
. . . 0 0 0

.

.

. 0 0 0

.

.

. 0
0 0 0 1 0 0 . . . 0 0 0 . . . 0
0 0 . . . 0 cos(θ) 0 . . . 0 − sin(θ) 0 . . . 0
0 0 . . . 0 0 1 . . . 0 0 0 . . . 0

0 0

.

.

. 0 0 0
. . . 0 0 0

.

.

. 0
0 0 . . . 0 0 0 0 1 0 0 . . . 0
0 0 . . . 0 sin(θ) 0 0 0 cos(θ) 0 . . . 0
0 0 . . . 0 0 0 0 0 0 1 . . . 0

0 0

.

.

. 0 0 0 0 0 0 0
. . . 0

0 0 . . . 0 0 0 0 0 0 0 0 1


.
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Going one step further

For any (k, l) and any θ in U2, Wkl(θ)PΠW T
kl (θ) is a projection

matrix as well (The spectrum remains unchanged).

If Πk 6= Πl choosing θkl such that

t =
2PΠ

kl

Kkk − Kll
, cos θkl =

1√
1 + t2

and sin θkl = t cos θkl .

does not change the diagonal either (Dhillon et al. (2005)).

Algorithm

Let K 0 = PΠ

for r = 1 to R (fixed in advance) do:
1 For each (k , l) in U2 such that Πk 6= Πl compute θrkl
2 Define (k r , l r ) = argmin

(k,r)∈U2

C (Wkl(θ
r
kl)K

r−1
j W T

kl (θrkl));

3 Set K r = Wk r l r (θ
r
k r l r )K

r−1W T
k r l r (θ

r
k r l r ) and r = r + 1.
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Going one step further

Implementing the previous algorithm with N = 148 PSUs and n = 14 for
Q = 2 auxiliary variables x1 and x2 (total amount of unemployement
benefits and of taxable income).
Figure 10: Evolution of the optimization criterion, DSDs perform as good as the
cube.

The curves j = 1, 2, 3 correspond respectively to 3 different ranking methods: by x2
k /Πk

(j = 1), by (x2
k + x3

k )/Πk (j = 2) and by the Hamilton path (j = 3).
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Constructing fixed-size DSDs with prescribed first and
second order inclusion probabilities

Apart from n = 1 or n = N − 1, SRS is not a determinantal sampling
design.

Does there exist K such that DSD(K ) has the same first and second
order probabilities as a SRS ? That is to say ,

K is a projection matrix,
πk = Kkk = n

N

πkl = KkkKkk − |Kkk |2 = n(n−1)
N(N−1) ⇐⇒ |Kkk |2 = n(N−n)

N2(N−1) .

Finding such a kernel is equivalent to finding an Equiangular Tight
Frame (ETF).

Many results on the existence of such frames are available in the
corresponding literature.
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Constructing fixed-size DSDs with prescribed first and
second order inclusion probabilities

Table 2: Existence of (N, n)-simple determinantal sampling designs, depending on
the kernel type (real or complex) for n < 9.

n 3 3 4 4 5 5 6 6 6 7 7 7 8 8 8

N 6 7 7 13 10 11 11 16 31 14 15 28 15 29 57

R C C C R C C R C R C R C C C

1 For a given family of (non-determinantal) sampling designs, there may or may not
exist a DSD with the same first and second order inclusion probabilities ;

2 There exists a DSD(C), C complex kernel such that no DSD(R), R real kernel has
the same first and second order inclusion probabilities. This plaids in favor of using
complex kernels.
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Perspectives

Implementing the selection algorithm efficiently;

Delving deeper into the properties of PΠ;

Delving deeper into complex kernels;

Delving deeper in optimization algorithm.
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THANK YOU FOR YOUR ATTENTION

Loonis Vincent1, Mary Xavier2 (1 Insee, Spatial Method Unit 2 Université Paris Nanterre, Modal’X )neufchatel September 2, 2018 38 / 40
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