Jean Opsomer Westat

August 20, 2018

Outline

- 1. Design-based survey estimation and inference
- 2. Constructing estimators
- 3. Weighting by observed response probabilities
- 4. Case study: constrained estimation of response probabilities
- 5. Conclusions

1. Survey modes of estimation and inference

- "Typical" social science survey:
 - large-scale data collection effort conducted on behalf of government agency, using complex multi-stage design
 - output: summary tables and/or weighted datasets
- Key concept: target of inference is specific finite population, e.g. all infants born in US hospitals in 2018, not characteristics of a model
- This traditionally leads to *design-based inference*: population treated as fixed but unknown, only randomness comes from sampling design

- Design-based inference is conceptually attractive
 - 1. assumption-free inference, because design is known
 - 2. model-free tools available to quantify sampling variability
 - 3. enables access to high quality datasets for analysis
 - variables available in their original form
 - analyses do not have to be pre-specified

• But:

- 1. estimators based on design often inefficient
- 2. high nonresponse "breaks" known design assumption

(Czajka and Beyler, 2016)

- Nonresponse is seen as important practical and research issue in human population surveys
- Tourangeau and Plewes (2013), Nonresponse in Social Science Surveys: A Research Agenda, National Academies Press
- Important on-going research on reducing nonresponse, especially in adaptive multi-mode approaches
- Nevertheless, nonresponse rates are generally expected to continue to increase

- Model-based inference: build model for target variables; once estimated, allows full set of model-based techniques including prediction of population quantities of interest
 - 1. maximize efficiency, subject only to inherent variability of data (and skill of modeler)
 - 2. bypass "nuisance" random processes: sampling design, response mechanism
- But:
 - 1. labor-intensive
 - 2. sample selection effect can invalidate results

- Thriving area of research within survey statistics, including by many SMURF participants
- Options:
 - ignore
 - apply model-assisted ideas and rely on relationships between variables to correct for nonresponse
 - explicit modeling of response mechanism
 - double-robust approaches
 - etc
- Theory is well understood (still room for improvement!)

- Conceptually, nonresponse is treated as "add-on" to design randomness
- We continue to appeal to classical design properties to justify design-based (weighted) approach to survey inference to users of survey data
- Is this counter-productive?

- "Generalized design-based" (?) relies on combination of design and models to account for selection process of obtaining data
 - sampling design, response mechanism, other selection steps (e.g. response-driven sampling)
 - → "selection probability" is longer assumption-free, but does not claim to be
- Key aspects:
 - 1. finite population still treated as fixed target of inference
 - 2. avoids modeling of survey variables to extent possible

- Modeling selection process: design known, but other components need to be modeled
 - access to paradata, frame data and confidential unitlevel data can lead to better models and creation of weights that can be released
 - survey specialists focus on developing and fitting selection models, no need to be subject-matter specialist
 - weights are presented as result of careful modeling, instead of modified design inclusion probabilities (similar to output in other areas of statistics)

- Modeling data selection process instead of data can still result in inefficient inference, since model is "generic" w.r.t. survey variables
- Improving efficiency
 - model-assisted approaches continue to apply
 - weighting by empirical response probabilities
- In both cases, efficiency gains depend on relationship between model variables and survey variables

- Could in principle be handled as a selection problem and modeled as such
- But: "Swiss cheese" nonresponse makes this often not practical
- Approaches:
 - explicit modeling (e.g. multiple imputation, regression imputation)
 - implicit modeling (e.g. hierarchical and/or fractional hot-deck imputation)

- Goal of imputation: create pseudo-data that look like original data
- Pro: allows survey users to continue using data as if obtained under selection-only approach
- Cons:
 - requires modeling of survey variables
 - can increase variability of estimators
- Might be preferable to leave this to subject-matter analysts?

- Finite population: $U = \{1, 2, \dots, k, \dots, N\}$
- Survey variables

 $y_k = \text{target variables (unknown outside sample, fixed)}$ $x_k = \text{auxiliary variables (known, fixed)}$

• Target population parameters: totals, means, proportions, e.g.

$$T_y = \sum_{k \in U} y_k$$

ullet Sample: $s\subset U$, obtained by selection mechanism p(s)

Sample membership indicator (random)

$$I_k = \begin{cases} 1 & \text{if } k \in s \\ 0 & \text{otherwise} \end{cases}$$

Selection probabilities

$$\begin{aligned} p_k &= \Pr(k \in s) = \mathsf{E}(I_k) \\ p_{kl} &= \Pr(k, l \in s) = \mathsf{E}(I_k I_l) \end{aligned}$$

- traditional: p_k, p_{kl} known
- if generalized design-based: well-defined quantities, to be estimated/predicted

Specifications of selection probability (unit nonresponse case)

$$p_k = \pi_k r(x_k)$$

$$p_{kl} = \pi_{kl} r(x_k) r(x_l)$$

- $-\pi_k, \pi_{kl}$ are "pure" design inclusion probabilities
- $-r(x) = r(x; \theta)$ is unknown function of auxiliary variable(s)
 - * usually: x is multivariate and categorical
 - * usually: r() is parametric

Inverse-probability weighting estimator

$$\widehat{T}_y = \sum_{k \in S} \widehat{w}_k y_k = \sum_{k \in U} \frac{I_k}{\widehat{p}_k} \ y_k = \sum_{k \in U} \frac{I_k}{\pi_k \ r(x_k; \widehat{\theta})} \ y_k$$

ullet \widehat{T}_y does not behave like "oracle" 2-phase estimator

$$\tilde{T}_y = \sum_{k \in s} w_k y_k = \sum_{k \in U} \frac{I_k}{\pi_k \ r(x_k; \theta)} \ y_k$$

- model dependent
- no longer exactly unbiased, even if model is correct
- often includes additional variance terms

- Response homogeneity group (RHG) model
 - common nonresponse adjustment in practice
 - flexible and efficient "all-purpose" approach, as approximation to more complicated underlying model
 - closely related to post-stratification
- Revisit efficiency of RHG (Särndal et al, 1992, Ch. 15.6)

RHG model

Selection process

- sample s drawn according to sampling design p(s)
- -conditional on s, units respond independently with unknown probabilities that are equal within groups s_g $(s = \cup s_g)$
- Selection probabilities

$$p_k = \pi_k \, \theta_g \qquad \text{for all } k \in s_g$$

$$p_{kl} = \pi_{kl} \, \theta_g \, \theta_{g'} \quad \text{for all } k \in s_g, l \in s_{g'}$$

ullet Groups s_g can be sample-dependent and $heta_g$ are unknown parameters

Notation

- $-R_k = 1$ if unit k responds, 0 otherwise
- $-n_g = \sum_{s_g} 1$: sample size in s_g
- $-m_g = \sum_{s_g} R_k$: respondent sample size in s_g
- $-r_g = \text{subset of respondents in } s_g$

ullet If $heta_q$ known, classical 2-phase estimator

$$\tilde{T}_y = \sum_{g=1}^G \sum_{r_g} \frac{1}{\pi_k \,\theta_g} \, y_k$$

Properties

$$\mathsf{E}(\tilde{T}_y) = T_y$$

$$\mathsf{Var}(\tilde{T}_y) \, = \, \sum_U \Delta_{kl} \frac{y_k}{\pi_k} \frac{y_l}{\pi_l} + \mathsf{E}_p \left(\sum_{g=1}^G \frac{1-\theta_g}{\theta_g} \sum_{s_g} \frac{y_k^2}{\pi_k^2} \right)$$

$$(\Delta_{kl} = \pi_{kl} - \pi_k \pi_l)$$

RHG estimator

$$\widehat{T}_{y} = \sum_{g=1}^{G} \sum_{r_{g}} \frac{1}{\pi_{k} \widehat{\theta_{g}}} y_{k} = \sum_{g=1}^{G} \sum_{r_{g}} \frac{1}{\pi_{k} \frac{m_{g}}{n_{g}}} y_{k}$$

Properties

$$\begin{aligned} \mathsf{E}(\widehat{T}_y) &= T_y \\ \mathsf{Var}(\widehat{T}_y) &\approx \sum_{U} \Delta_{kl} \frac{y_k \, y_l}{\pi_k \pi_l} \end{aligned}$$

$$+\mathsf{E}_{p}\left(\sum_{g=1}^{G}\frac{1-\theta_{g}}{\theta_{g}}\sum_{s_{g}}\left(\frac{y_{k}}{\pi_{k}}-\frac{\sum_{s_{g}}y_{k}/\pi_{k}}{n_{g}}\right)^{2}\right)$$

Compare

$$\begin{aligned} \mathsf{Var}(\widehat{T}_y) &\approx \sum \sum_U \Delta_{kl} \frac{y_k y_l}{\pi_k \pi_l} \\ + \mathsf{E}_p \left(\sum_{g=1}^G \frac{1 - \theta_g}{\theta_g} \sum_{s_g} \left(\frac{y_k}{\pi_k} - \frac{\sum_{s_g} y_k / \pi_k}{n_g} \right)^2 \right) \end{aligned}$$

$$\mathsf{Var}(\tilde{T}_y) \, = \, \sum_U \Delta_{kl} \frac{y_k}{\pi_k} \frac{y_l}{\pi_l} + \mathsf{E}_p \left(\sum_{g=1}^G \frac{1-\theta_g}{\theta_g} \sum_{s_g} \frac{y_k^2}{\pi_k^2} \right)$$

- \bullet Using observed response probabilities $\widehat{\theta}_g = m_g/n_g$ is equivalent to ratio-type estimator
 - efficiency gains relative to Horvitz-Thompson estimator
- Gains depend on:
 - correctness of response model
 - -homogeneity of y_k/π_k within groups
- Gains can offset efficiency losses due to (modest) model departures

• We consider estimator of RHG type

$$\widehat{T}_{y} = \sum_{g=1}^{G} \sum_{r_{g}} \frac{1}{\pi_{k} \widehat{\theta}_{g}} y_{k} = \sum_{g=1}^{G} \sum_{r_{g}} \frac{1}{\pi_{k} \frac{m_{g}}{n_{g}}} y_{k}$$

with r_g, s_g defined by values of ordinal variable x

ullet Assume response probability monotone in x:

$$x_k \le x_l \Rightarrow r(x_k) \le r(x_l)$$

and for simplicity, rewrite as

$$\theta_1 \leq \ldots \leq \theta_G$$

- Can be set up as design-weighted or unweighted problem;
 consider unweighted here
- ullet Estimators $\widehat{\theta}_1^c, \dots, \widehat{\theta}_C^c$ are solution to

$$\min \sum_{g=1}^{G} \sum_{s_g} n_g (R_k - \theta_g)^2 \quad \text{ subject to } \theta_1 \le \ldots \le \theta_G$$

with $R_k = 1$ if unit k responds, 0 otherwise

• If minimizer satisfies constraint,

$$\widehat{\theta}_g^c = \frac{m_g}{n_g} = \widehat{\theta}_g$$

• If constraint is binding,

$$\widehat{\theta}_g^c = \frac{m_{g_1:g_2}}{n_{g_1:g_2}} = \widehat{\theta}_{g_1:g_2}$$

with $g_1 \leq g \leq g_2$

• In general,

$$\widehat{\theta}_g^c = \max_{g_1 \le g} \min_{g \le g_2} \frac{m_{g_1:g_2}}{n_{g_1:g_2}}$$

and $\widehat{\theta}_{g_1}^c = \ldots = \widehat{\theta}_{g_2}^c$ (Brunk, 1955)

→ automatic determination of response homogeneity groups, by pooling neighboring groups Estimator

$$\widehat{T}_{y}^{c} = \sum_{g=1}^{G} \sum_{r_g} \frac{1}{\pi_k \widehat{\theta}_{g}^{c}} y_k = \sum_{g'=1}^{G_s^*} \sum_{r'_g} \frac{1}{\pi_k \widehat{\theta}_{g'}^{c}} y_k$$

with G_s^* sample-dependent, determined by pooling

- We study its theoretical properties
 - -classical design-based asymptotic framework $(N \rightarrow \infty)$, sequence of designs p_N , asymptotic normality, etc)
 - assuming constrained RHG model holds in population

- 1. Response probability estimator $\widehat{\theta}_g^c$ is consistent for θ_g w.r.t. design and response model
- 2. RHG estimator \widehat{T}_y^c is consistent for T_y w.r.t. design and response model
- 3. Let $\widehat{V}_s^*=$ linearized variance estimate treating the pooled groups $\{r_{q'},g'=1,\ldots,G_s^*\}$ as fixed. Then,

$$\frac{\widehat{T}_y^c - T_y}{\sqrt{\widehat{V}_s^*}} \to \mathcal{N}(0, 1)$$

• Population: N=10,000, 5 equal-sized groups U_g with $y_k \sim \mathcal{N}(1+g,1) \quad \text{for } k \in U_g$

- \bullet Sampling design: SRSWOR with n=400
- Response mechanism: RHG with

$$R_k \sim \mathsf{Ber}(\theta_g) \quad \mathsf{for} \ k \in U_g$$

and we consider different specifications of θ_1,\ldots,θ_5

• 10,000 replications

Simulations: setup (2)

• Estimators of population mean

$$ar{Y}=$$
 unconstrained RHG estimator $ar{Y}^c=$ constrained RHG estimator $ar{Y}_{HT}=$ Horvitz-Thompson estimator, true $heta_g$ $ar{Y}_{HA}=$ Hájek (ratio) estimator, true $heta_g$

with

$$\bar{Y}_{HT} = \frac{\sum_{g} \sum_{s_g} y_k / (\pi_k \theta_g)}{N}$$

$$\bar{Y}_{HA} = \frac{\sum_{g} \sum_{s_g} y_k / (\pi_k \theta_g)}{\sum_{g} \sum_{s_g} 1 / (\pi_k \theta_g)}$$

• Scenario 1: high response rate, monotone $(\theta_1, \dots, \theta_5) = (0.5, 0.6, 0.7, 0.8, 0.9)$

- Scenario 2: medium response rate, monotone $(\theta_1, \dots, \theta_5) = (0.3, 0.4, 0.5, 0.6, 0.7)$
- Scenario 3: low response rate, monotone $(\theta_1, \dots, \theta_5) = (0.2, 0.25, 0.3, 0.35, 0.4)$
- Scenario 4: equal-probability (monotone) $(\theta_1, \dots, \theta_5) = (0.5, 0.5, 0.5, 0.5, 0.5)$

$$(\theta_1, \dots, \theta_5) = (0.5, 0.6, 0.7, 0.8, 0.9)$$

	Rel. Bias (%)	Scaled MSE
$ar{Y}$	-0.014	_
$ar{Y}^c$	-0.21	1.04
\bar{Y}^{HT}	-0.034	8.52
\bar{Y}^{HA}	-0.009	3.08

$$(\theta_1, \dots, \theta_5) = (0.3, 0.4, 0.5, 0.6, 0.7)$$

	Rel. Bias (%)	Scaled MSE
\overline{Y}	0.011	_
$ar{Y}^c$	-0.247	1.06
\bar{Y}^{HT}	-0.034	5.82
\bar{Y}^{HA}	0.106	2.90

$$(\theta_1, \dots, \theta_5) = (0.2, 0.25, 0.3, 0.35, 0.4)$$

	Rel. Bias (%)	Scaled MSE
\bar{Y}	-0.004	_
$ar{Y}^c$	-0.586	1.12
\bar{Y}^{HT}	-0.011	11.00
\bar{Y}^{HA}	0.155	2.97

$$(\theta_1, \dots, \theta_5) = (0.5, 0.5, 0.5, 0.5, 0.5)$$

	Rel. Bias (%)	Scaled MSE
\bar{Y}	-0.001	_
$ar{Y}^c$	-1.772	2.51
\bar{Y}^{HT}	0.005	11.07
\bar{Y}^{HA}	-0.012	2.97

- Applying RHG estimation at smallest scale possible appears to be most efficient
- Using external knowledge about response probabilities not sufficient to offset this
- ullet Not shown: effects disappear if y_k iid across RHG groups

5. Conclusions

• Generalized design-based inference

- corresponds to current "best practice" in survey organizations, but is hidden behind nominal design-based approach
- claim: should be explicitly recognized and advocated
- RHG (and PS) provide good all-purpose approach for constructing efficient estimators in social surveys, since most variables are categorical

CONTACT: JeanOpsomer@westat.com