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1. Survey modes of estimation and inference 3

• “Typical” social science survey:

– large-scale data collection effort conducted on behalf of
government agency, using complex multi-stage design

– output: summary tables and/or weighted datasets

• Key concept: target of inference is specific finite popu-
lation, e.g. all infants born in US hospitals in 2018, not
characteristics of a model

• This traditionally leads to design-based inference: pop-
ulation treated as fixed but unknown, only randomness
comes from sampling design
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Design-based inference 4

• Design-based inference is conceptually attractive

1. assumption-free inference, because design is known

2. model-free tools available to quantify sampling vari-
ability

3. enables access to high quality datasets for analysis

– variables available in their original form

– analyses do not have to be pre-specified

• But:

1. estimators based on design often inefficient

2. high nonresponse “breaks” known design assumption
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Growing nonresponse issue in official surveys 5

(Czajka and Beyler, 2016)
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Nonresponse mitigation 6

• Nonresponse is seen as important practical and research
issue in human population surveys

• Tourangeau and Plewes (2013), Nonresponse in Social
Science Surveys: A Research Agenda, National Academies
Press

• Important on-going research on reducing nonresponse, es-
pecially in adaptive multi-mode approaches

• Nevertheless, nonresponse rates are generally expected to
continue to increase
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Model-based solution? 7

•Model-based inference: build model for target variables;
once estimated, allows full set of model-based techniques
including prediction of population quantities of interest

1. maximize efficiency, subject only to inherent variability
of data (and skill of modeler)

2. bypass “nuisance” random processes: sampling design,
response mechanism

• But:

1. labor-intensive

2. sample selection effect can invalidate results
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Nonresponse adjustments in design-based estimation 8

• Thriving area of research within survey statistics, includ-
ing by many SMURF participants

• Options:

– ignore

– apply model-assisted ideas and rely on relationships be-
tween variables to correct for nonresponse

– explicit modeling of response mechanism

– double-robust approaches

– etc

• Theory is well understood (still room for improvement!)
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Nonresponse adjustments in estimation (2) 9

• Conceptually, nonresponse is treated as “add-on” to de-
sign randomness

•We continue to appeal to classical design properties to
justify design-based (weighted) approach to survey infer-
ence to users of survey data

• Is this counter-productive?
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Reframing design-based inference 10

• “Generalized design-based” (?) relies on combination of
design and models to account for selection process of ob-
taining data

– sampling design, response mechanism, other selection
steps (e.g. response-driven sampling)

→ “selection probability” is longer assumption-free, but
does not claim to be

• Key aspects:

1. finite population still treated as fixed target of inference

2. avoids modeling of survey variables to extent possible
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Generalized design-based inference 11

•Modeling selection process: design known, but other com-
ponents need to be modeled

– access to paradata, frame data and confidential unit-
level data can lead to better models and creation of
weights that can be released

– survey specialists focus on developing and fitting selec-
tion models, no need to be subject-matter specialist

– weights are presented as result of careful modeling, in-
stead of modified design inclusion probabilities (similar
to output in other areas of statistics)
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Generalized design-based inference (2) 12

•Modeling data selection process instead of data can still
result in inefficient inference, since model is “generic”
w.r.t. survey variables

• Improving efficiency

– model-assisted approaches continue to apply

– weighting by empirical response probabilities

• In both cases, efficiency gains depend on relationship be-
tween model variables and survey variables
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What about item nonresponse? 13

• Could in principle be handled as a selection problem and
modeled as such

• But: “Swiss cheese” nonresponse makes this often not
practical

• Approaches:

– explicit modeling (e.g. multiple imputation, regression
imputation)

– implicit modeling (e.g. hierarchical and/or fractional
hot-deck imputation)
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What about item nonresponse? (2) 14

• Goal of imputation: create pseudo-data that look like
original data

• Pro: allows survey users to continue using data as if ob-
tained under selection-only approach

• Cons:

– requires modeling of survey variables

– can increase variability of estimators

•Might be preferable to leave this to subject-matter ana-
lysts?
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2. Constructing generalized design-based estimators 15

• Finite population: U = {1, 2, . . . , k, . . . , N}
• Survey variables

yk = target variables (unknown outside sample, fixed)

xk = auxiliary variables (known, fixed)

• Target population parameters: totals, means, propor-
tions, e.g.

Ty =
∑
k∈U

yk

• Sample: s ⊂ U , obtained by selection mechanism p(s)
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Generalized design-based estimation 16

• Sample membership indicator (random)

Ik =

{
1 if k ∈ s
0 otherwise

• Selection probabilities

pk = Pr(k ∈ s) = E(Ik)

pkl = Pr(k, l ∈ s) = E(IkIl)

– traditional: pk, pkl known

– if generalized design-based: well-defined quantities, to
be estimated/predicted
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Generalized design-based estimation (2) 17

• Specifications of selection probability (unit nonresponse
case)

pk = πk r(xk)

pkl = πkl r(xk) r(xl)

– πk, πkl are “pure” design inclusion probabilities

– r(x) = r(x; θ) is unknown function of auxiliary vari-
able(s)

∗ usually: x is multivariate and categorical

∗ usually: r() is parametric
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Generalized design-based estimation (3) 18

• Inverse-probability weighting estimator

T̂y =
∑
k∈s

ŵkyk =
∑
k∈U

Ik
p̂k

yk =
∑
k∈U

Ik

πk r(xk; θ̂)
yk

• T̂y does not behave like “oracle” 2-phase estimator

T̃y =
∑
k∈s

wkyk =
∑
k∈U

Ik
πk r(xk; θ)

yk

– model dependent

– no longer exactly unbiased, even if model is correct

– often includes additional variance terms
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3. Weighting by observed response probabilities 19

• Response homogeneity group (RHG) model

– common nonresponse adjustment in practice

– flexible and efficient “all-purpose” approach, as approx-
imation to more complicated underlying model

– closely related to post-stratification

• Revisit efficiency of RHG (Särndal et al, 1992, Ch. 15.6)
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RHG model 20

• Selection process

– sample s drawn according to sampling design p(s)

– conditional on s, units respond independently with un-
known probabilities that are equal within groups sg
(s = ∪sg)

• Selection probabilities

pk = πk θg for all k ∈ sg
pkl = πkl θg θg′ for all k ∈ sg, l ∈ sg′

• Groups sg can be sample-dependent and θg are unknown
parameters
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RHG estimation 21

• Notation

–Rk = 1 if unit k responds, 0 otherwise

– ng =
∑
sg 1: sample size in sg

–mg =
∑
sg Rk: respondent sample size in sg

– rg = subset of respondents in sg
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RHG estimation (2) 22

• If θg known, classical 2-phase estimator

T̃y =

G∑
g=1

∑
rg

1

πk θg
yk

• Properties

E(T̃y) = Ty

Var(T̃y) =
∑∑

U

∆kl
yk
πk

yl
πl

+ Ep

 G∑
g=1

1− θg
θg

∑
sg

y2
k

π2
k


(∆kl = πkl − πkπl)
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RHG estimation (3) 23

• RHG estimator

T̂y =

G∑
g=1

∑
rg

1

πk θ̂g
yk =

G∑
g=1

∑
rg

1

πk
mg
ng

yk

• Properties

E(T̂y) = Ty

Var(T̂y) ≈
∑∑

U

∆kl
yk
πk

yl
πl

+Ep

 G∑
g=1

1− θg
θg

∑
sg

(
yk
πk
−
∑
sg yk/πk

ng

)2

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RHG efficiency 24

• Compare

Var(T̂y) ≈
∑∑

U

∆kl
yk
πk

yl
πl

+Ep

 G∑
g=1

1− θg
θg

∑
sg

(
yk
πk
−
∑
sg yk/πk

ng

)2


Var(T̃y) =
∑∑

U

∆kl
yk
πk

yl
πl

+ Ep

 G∑
g=1

1− θg
θg

∑
sg

y2
k

π2
k


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RHG efficiency (2) 25

• Using observed response probabilities θ̂g = mg/ng is
equivalent to ratio-type estimator

– efficiency gains relative to Horvitz-Thompson estimator

• Gains depend on:

– correctness of response model

– homogeneity of yk/πk within groups

• Gains can offset efficiency losses due to (modest) model
departures
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4. Special case: RHG under natural ordering 26

•We consider estimator of RHG type

T̂y =

G∑
g=1

∑
rg

1

πk θ̂g
yk =

G∑
g=1

∑
rg

1

πk
mg
ng

yk

with rg, sg defined by values of ordinal variable x

• Assume response probability monotone in x:

xk ≤ xl ⇒ r(xk) ≤ r(xl)

and for simplicity, rewrite as

θ1 ≤ . . . ≤ θG

26



Constrained estimation of response probabilities 27

• Can be set up as design-weighted or unweighted problem;
consider unweighted here

• Estimators θ̂c1, . . . , θ̂
c
G are solution to

min

G∑
g=1

∑
sg

ng(Rk − θg)2 subject to θ1 ≤ . . . ≤ θG

with Rk = 1 if unit k responds, 0 otherwise

• If minimizer satisfies constraint,

θ̂cg =
mg

ng
= θ̂g
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Constrained estimation of response probabilities (2) 28

• If constraint is binding,

θ̂cg =
mg1:g2

ng1:g2

= θ̂g1:g2

with g1 ≤ g ≤ g2

• In general,

θ̂cg = max
g1≤g

min
g≤g2

mg1:g2

ng1:g2

and θ̂cg1
= . . . = θ̂cg2

(Brunk, 1955)

→ automatic determination of response homogeneity groups,
by pooling neighboring groups
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Constrained RHG estimator 29

• Estimator

T̂ cy =

G∑
g=1

∑
rg

1

πk θ̂
c
g

yk =

G∗s∑
g′=1

∑
r′g

1

πk θ̂
c
g′
yk

with G∗s sample-dependent, determined by pooling

•We study its theoretical properties

– classical design-based asymptotic framework (N →
∞, sequence of designs pN , asymptotic normality, etc)

– assuming constrained RHG model holds in population
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Theoretical results 30

1. Response probability estimator θ̂cg is consistent for θg
w.r.t. design and response model

2. RHG estimator T̂ cy is consistent for Ty w.r.t. design and
response model

3. Let V̂ ∗s = linearized variance estimate treating the pooled
groups {rg′, g′ = 1, . . . , G∗s} as fixed. Then,

T̂ cy − Ty√
V̂ ∗s

→ N (0, 1)
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Simulations: setup 31

• Population: N = 10, 000, 5 equal-sized groups Ug with

yk ∼ N (1 + g, 1) for k ∈ Ug
• Sampling design: SRSWOR with n = 400

• Response mechanism: RHG with

Rk ∼ Ber(θg) for k ∈ Ug
and we consider different specifications of θ1, . . . , θ5

• 10,000 replications
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Simulations: setup (2) 32

• Estimators of population mean

Ȳ = unconstrained RHG estimator

Ȳ c = constrained RHG estimator

ȲHT = Horvitz-Thompson estimator, true θg
ȲHA = Hájek (ratio) estimator, true θg

with

ȲHT =

∑
g
∑
sg yk/(πkθg)

N

ȲHA =

∑
g
∑
sg yk/(πkθg)∑

g
∑
sg 1/(πkθg)
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Simulations: scenarios 33

• Scenario 1: high response rate, monotone

(θ1, . . . , θ5) = (0.5, 0.6, 0.7, 0.8, 0.9)

• Scenario 2: medium response rate, monotone

(θ1, . . . , θ5) = (0.3, 0.4, 0.5, 0.6, 0.7)

• Scenario 3: low response rate, monotone

(θ1, . . . , θ5) = (0.2, 0.25, 0.3, 0.35, 0.4)

• Scenario 4: equal-probability (monotone)

(θ1, . . . , θ5) = (0.5, 0.5, 0.5, 0.5, 0.5)
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Simulations: scenario 1 34

(θ1, . . . , θ5) = (0.5, 0.6, 0.7, 0.8, 0.9)

Rel. Bias (%) Scaled MSE
Ȳ -0.014 –
Ȳ c -0.21 1.04

Ȳ HT -0.034 8.52

Ȳ HA -0.009 3.08
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Simulations: scenario 2 35

(θ1, . . . , θ5) = (0.3, 0.4, 0.5, 0.6, 0.7)

Rel. Bias (%) Scaled MSE
Ȳ 0.011 –
Ȳ c -0.247 1.06

Ȳ HT -0.034 5.82

Ȳ HA 0.106 2.90
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Simulations: scenario 3 36

(θ1, . . . , θ5) = (0.2, 0.25, 0.3, 0.35, 0.4)

Rel. Bias (%) Scaled MSE
Ȳ -0.004 –
Ȳ c -0.586 1.12

Ȳ HT -0.011 11.00

Ȳ HA 0.155 2.97
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Simulations: scenario 4 37

(θ1, . . . , θ5) = (0.5, 0.5, 0.5, 0.5, 0.5)

Rel. Bias (%) Scaled MSE
Ȳ -0.001 –
Ȳ c -1.772 2.51

Ȳ HT 0.005 11.07

Ȳ HA -0.012 2.97
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Simulations: findings 38

• Applying RHG estimation at smallest scale possible ap-
pears to be most efficient

• Using external knowledge about response probabilities not
sufficient to offset this

• Not shown: effects disappear if yk iid across RHG groups
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5. Conclusions 39

• Generalized design-based inference

– corresponds to current “best practice” in survey orga-
nizations, but is hidden behind nominal design-based
approach

– claim: should be explicitly recognized and advocated

• RHG (and PS) provide good all-purpose approach for con-
structing efficient estimators in social surveys, since most
variables are categorical

CONTACT: JeanOpsomer@westat.com
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